Molecular Basis for Transgenerational Toxicity Induction of Environmental Toxicants or Stresses

  • Dayong Wang


In the recent years, the underlying mechanisms for transgenerational toxicity of environmental toxicants or stresses have received more and more attention. We here introduced the molecular alterations during the formation of transgenerational toxicity of environmental toxicants or stresses. We also introduced molecular signal- and epigenetic signal-mediated molecular mechanisms for transgenerational toxicity of environmental toxicants or stresses. Moreover, we discussed the crucial role of intestinal barrier against the formation of transgenerational toxicity of environmental toxicants or stresses in nematodes.


Molecular basis Transgenerational toxicity Caenorhabditis elegans 


  1. 1.
    Wang D-Y (2018) Nanotoxicology in Caenorhabditis elegans. Springer, SingaporeCrossRefGoogle Scholar
  2. 2.
    Ren M-X, Zhao L, Ding X-C, Krasteva N, Rui Q, Wang D-Y (2018) Developmental basis for intestinal barrier against the toxicity of graphene oxide. Part Fibre Toxicol 15:26PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Xiao G-S, Chen H, Krasteva N, Liu Q-Z, Wang D-Y (2018) Identification of interneurons required for the aversive response of Caenorhabditis elegans to graphene oxide. J Nanbiotechnol 16:45CrossRefGoogle Scholar
  4. 4.
    Ding X-C, Rui Q, Wang D-Y (2018) Functional disruption in epidermal barrier enhances toxicity and accumulation of graphene oxide. Ecotoxicol Environ Saf 163:456–464CrossRefGoogle Scholar
  5. 5.
    Zhao L, Kong J-T, Krasteva N, Wang D-Y (2018) Deficit in epidermal barrier induces toxicity and translocation of PEG modified graphene oxide in nematodes. Toxicol Res 7(6):1061–1070. CrossRefGoogle Scholar
  6. 6.
    Shao H-M, Han Z-Y, Krasteva N, Wang D-Y (2018) Identification of signaling cascade in the insulin signaling pathway in response to nanopolystyrene particles. Nanotoxicology in pressGoogle Scholar
  7. 7.
    Qu M, Xu K-N, Li Y-H, Wong G, Wang D-Y (2018) Using acs-22 mutant Caenorhabditis elegans to detect the toxicity of nanopolystyrene particles. Sci Total Environ 643:119–126PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Dong S-S, Qu M, Rui Q, Wang D-Y (2018) Combinational effect of titanium dioxide nanoparticles and nanopolystyrene particles at environmentally relevant concentrations on nematodes Caenorhabditis elegans. Ecotoxicol Environ Saf 161:444–450PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Xiao G-S, Zhao L, Huang Q, Yang J-N, Du H-H, Guo D-Q, Xia M-X, Li G-M, Chen Z-X, Wang D-Y (2018) Toxicity evaluation of Wanzhou watershed of Yangtze Three Gorges Reservior in the flood season in Caenorhabditis elegans. Sci Rep 8:6734PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Xiao G-S, Zhao L, Huang Q, Du H-H, Guo D-Q, Xia M-X, Li G-M, Chen Z-X, Wang D-Y (2018) Biosafety assessment of water samples from Wanzhou watershed of Yangtze Three Gorges Reservior in the quiet season in Caenorhabditis elegans. Sci Rep 8:14102CrossRefGoogle Scholar
  11. 11.
    Yin J-C, Liu R, Jian Z-H, Yang D, Pu Y-P, Yin L-H, Wang D-Y (2018) Di (2-ethylhexyl) phthalate-induced reproductive toxicity involved in DNA damage-dependent oocyte apoptosis and oxidative stress in Caenorhabditis elegans. Ecotoxicol Environ Saf 163:298–306CrossRefGoogle Scholar
  12. 12.
    Xiao G-S, Zhi L-T, Ding X-C, Rui Q, Wang D-Y (2017) Value of mir-247 in warning graphene oxide toxicity in nematode Caenorhabditis elegans. RSC Adv 7:52694–52701CrossRefGoogle Scholar
  13. 13.
    Wu Q-L, Han X-X, Wang D, Zhao F, Wang D-Y (2017) Coal combustion related fine particulate matter (PM2.5) induces toxicity in Caenorhabditis elegans by dysregulating microRNA expression. Toxicol Res 6:432–441CrossRefGoogle Scholar
  14. 14.
    Wang Y, Xie W, Wang D-Y (2007) Transferable properties of multi-biological toxicity caused by cobalt exposure in Caenorhabditis elegans. Environ Toxicol Chem 26:2405–2412PubMedCrossRefGoogle Scholar
  15. 15.
    Wang D-Y, Shen L-L, Wang Y (2007) The phenotypic and behavioral defects can be transferred from zinc exposed nematodes to their progeny. Environ Toxicol Pharmacol 24:223–230PubMedCrossRefGoogle Scholar
  16. 16.
    Wang D-Y, Yang P (2007) The multi-biological defects caused by lead exposure exhibit transferable properties from exposed parents to their progeny in Caenorhabditis elegans. J Environ Sci 19:1367–1372CrossRefGoogle Scholar
  17. 17.
    Wang D-Y, Wang Y (2008) Nickel sulfate induces numerous defects in Caenorhabditis elegans that can also be transferred to progeny. Environ Pollut 151:585–592PubMedCrossRefGoogle Scholar
  18. 18.
    Kim SW, Kwak JI, An YJ (2013) Multigenerational study of gold nanoparticles in Caenorhabditis elegans: transgenerational effect of maternal exposure. Environ Sci Technol 47:5393–5399PubMedCrossRefGoogle Scholar
  19. 19.
    Zhao Y-L, Lin Z-Q, Jia R-H, Li G-J, Xi Z-G, Wang D-Y (2014) Transgenerational effects of traffic-related fine particulate matter (PM2.5) on nematode Caenorhabditis elegans. J Hazard Mater 274:106–114PubMedCrossRefGoogle Scholar
  20. 20.
    Schultz CL, Wamucho A, Tsyusko OV, Unrine JM, Crossley A, Svendsen C, Spurgeon DJ (2016) Multigenerational exposure to silver ions and silver nanoparticles reveals heightened sensitivity and epigenetic memory in Caenorhabditis elegans. Proc Biol Sci B 283:20152911CrossRefGoogle Scholar
  21. 21.
    Wu Q-L, Zhao Y-L, Li Y-P, Wang D-Y (2014) Molecular signals regulating translocation and toxicity of graphene oxide in the nematode Caenorhabditis elegans. Nanoscale 6:11204–11212CrossRefGoogle Scholar
  22. 22.
    Yu Z, Chen X, Zhang J, Wang R, Yin D (2013) Transgenerational effects of heavy metals on L3 larva of Caenorhabditis elegans with greater behavior and growth inhibitions in the progeny. Ecotoxicol Environ Saf 88:178–184PubMedCrossRefGoogle Scholar
  23. 23.
    Taki FA, Pan X, Zhang B (2013) Nicotine exposure caused significant transgenerational heritable behavioral changes in Caenorhabditis elegans. EXCLI J 12:793–806PubMedPubMedCentralGoogle Scholar
  24. 24.
    Min H, Sung M, Son M, Kawasaki I, Shim YH (2017) Transgenerational effects of proton beam irradiation on Caenorhabditis elegans germline apoptosis. Biochem Biophys Res Commun 490:608–615PubMedCrossRefGoogle Scholar
  25. 25.
    Buisset-Goussen A, Goussen B, Della-Vedova C, Galas S, Adam-Guillermin C, Lecomte-Pradines C (2014) Effects of chronic gamma irradiation: a multigenerational study using Caenorhabditis elegans. J Environ Radioact 137:190–197PubMedCrossRefGoogle Scholar
  26. 26.
    Dong Zhou D, Yang J, Li H, Lu Q, Liu Y, Lin K (2016) Ecotoxicity of bisphenol A to Caenorhabditis elegans by multigenerational exposure and variations of stress response in vivo across generations. Environ Pollut 208:767–773PubMedCrossRefGoogle Scholar
  27. 27.
    Taki FA, Pan X, Lee MH, Zhang B (2014) Nicotine exposure and transgenerational impact: a prospective study on small regulatory microRNAs. Sci Rep 4:7513PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Zhi L-T, Fu W, Wang X, Wang D-Y (2016) ACS-22, a protein homologous to mammalian fatty acid transport protein 4, is essential for the control of toxicity and translocation of multi-walled carbon nanotubes in Caenorhabditis elegans. RSC Adv 6:4151–4159CrossRefGoogle Scholar
  29. 29.
    Zhao Y-L, Yu X-M, Jia R-H, Yang R-L, Rui Q, Wang D-Y (2015) Lactic acid bacteria protects Caenorhabditis elegans from toxicity of graphene oxide by maintaining normal intestinal permeability under different genetic backgrounds. Sci Rep 5:17233PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Liu Z-F, Zhou X-F, Wu Q-L, Zhao Y-L, Wang D-Y (2015) Crucial role of intestinal barrier in the formation of transgenerational toxicity in quantum dots exposed nematodes Caenorhabditis elegans. RSC Adv 5:94257–94266CrossRefGoogle Scholar
  31. 31.
    Ni JZ, Kalinava N, Chen E, Huang A, Trinh T, Gu SG (2016) A transgenerational role of the germline nuclear RNAi pathway in repressing heat stress-induced transcriptional activation in C. elegans. Epigenetics Chromatin 9:3PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Wu Q-L, Cao X-O, Yan D, Wang D-Y, Aballay A (2015) Genetic screen reveals link between maternal-effect sterile gene mes-1 and P. aeruginosa-induced neurodegeneration in C. elegans. J Biol Chem 290:29231–29239PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Yu Y-L, Zhi L-T, Guan X-M, Wang D-Y, Wang D-Y (2016) FLP-4 neuropeptide and its receptor in a neuronal circuit regulate preference choice through functions of ASH-2 trithorax complex in Caenorhabditis elegans. Sci Rep 6:21485PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Sun L-M, Zhi L-T, Shakoor S, Liao K, Wang D-Y (2016) microRNAs involved in the control of innate immunity in Candida infected Caenorhabditis elegans. Sci Rep 6:36036PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Sun L-M, Liao K, Li Y-P, Zhao L, Liang S, Guo D, Hu J, Wang D-Y (2016) Synergy between PVP-coated silver nanoparticles and azole antifungal against drug-resistant Candida albicans. J Nanosci Nanotechnol 16:2325–2335CrossRefGoogle Scholar
  36. 36.
    Sun L-M, Liao K, Hong C-C, Wang D-Y (2017) Honokiol induces reactive oxygen species-mediated apoptosis in Candida albicans through mitochondrial dysfunction. PLoS ONE 12:e0172228PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Sun L-M, Liao K, Wang D-Y (2017) Honokiol induces superoxide production by targeting mitochondrial respiratory chain complex I in Candida albicans. PLoS ONE 12:e0184003PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Zhi L-T, Yu Y-L, Li X-Y, Wang D-Y, Wang D-Y (2017) Molecular control of innate immune response to Pseudomonas aeruginosa infection by intestinal let-7 in Caenorhabditis elegans. PLoS Pathog 13:e1006152PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Zhi L-T, Yu Y-L, Jiang Z-X, Wang D-Y (2017) mir-355 functions as an important link between p38 MAPK signaling and insulin signaling in the regulation of innate immunity. Sci Rep 7:14560PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Yu Y-L, Zhi L-T, Wu Q-L, Jing L-N, Wang D-Y (2018) NPR-9 regulates innate immune response in Caenorhabditis elegans by antagonizing activity of AIB interneurons. Cell Mol Immunol 15:27–37CrossRefGoogle Scholar
  41. 41.
    Palominos MF, Verdugo L, Gabaldon C, Pollak B, Ortíz-Severín J, Varas MA, Chávez FP, Calixto A (2017) Transgenerational diapause as an avoidance strategy against bacterial pathogens in Caenorhabditis elegans. MBio 8:e01234–e01217PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Yu C, Liao VH (2016) Transgenerational reproductive effects of arsenite are associated with H3K4 dimethylation and SPR-5 downregulation in Caenorhabditis elegans. Environ Sci Technol 50:10673–10681PubMedCrossRefGoogle Scholar
  43. 43.
    Kishimoto S, Uno M, Okabe E, Nono M, Nishida E (2016) Environmental stresses induce transgenerationally inheritable survival advantages via germline-tosoma communication in Caenorhabditis elegans. Nat Commun 8:14031CrossRefGoogle Scholar
  44. 44.
    Yang J, Chatterjee N, Kim Y, Roh J, Kwon J, Park M, Choi J (2018) Histone methylation-associated transgenerational inheritance of reproductive defects in Caenorhabditis elegans exposed to crude oil under various exposure scenarios. Chemosphere 200:358–365PubMedCrossRefGoogle Scholar
  45. 45.
    Klosin A, Casas E, Hidalgo-Carcedo C, Vavouri T, Lehner B (2017) Transgenerational transmission of environmental information in C. elegans. Science 356:320–323PubMedCrossRefGoogle Scholar
  46. 46.
    Frazier HN III, Roth MB (2009) Adaptive sugar provisioning controls survival of C. elegans embryos in adverse environments. Curr Biol 19:859–863PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Burton NO, Furuta T, Webster AK, Kaplan REW, Baugh LR, Arur S, Horvitz HR (2017) Insulin-like signalling to the maternal germline controls progeny response to osmotic stress. Nat Cell Biol 19:252–257PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Dayong Wang
    • 1
  1. 1.School of MedicineSoutheast UniversityNanjingChina

Personalised recommendations