Advertisement

Strategies to Screen and to Identify New Genetic Loci Involved in the Regulation of Toxicity of Environmental Toxicants or Stresses

  • Dayong Wang
Chapter

Abstract

It is necessary to employ powerful strategies to screen and to identify new genetic loci involved in the regulation of toxicity of environmental toxicants or stresses in nematodes. We here introduced the usefulness of transcriptomic analysis, proteomic analysis, forward genetics, and reverse genetics in screening and in identifying new genetic loci involved in the regulation of toxicity of environmental toxicants or stresses. Meanwhile, we discussed the related limitations for these strategies in nematodes.

Keywords

Transcriptomic analysis Proteomic analysis Forward genetics Reverse genetics Screen Caenorhabditis elegans 

References

  1. 1.
    Wang D-Y (2018) Nanotoxicology in Caenorhabditis elegans. Springer, SingaporeCrossRefGoogle Scholar
  2. 2.
    Qu M, Xu K-N, Li Y-H, Wong G, Wang D-Y (2018) Using acs-22 mutant Caenorhabditis elegans to detect the toxicity of nanopolystyrene particles. Sci Total Environ 643:119–126PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Dong S-S, Qu M, Rui Q, Wang D-Y (2018) Combinational effect of titanium dioxide nanoparticles and nanopolystyrene particles at environmentally relevant concentrations on nematodes Caenorhabditis elegans. Ecotoxicol Environ Saf 161:444–450PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Li W-J, Wang D-Y, Wang D-Y (2018) Regulation of the response of Caenorhabditis elegans to simulated microgravity by p38 mitogen-activated protein kinase signaling. Sci Rep 8:857PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Xiao G-S, Zhao L, Huang Q, Yang J-N, Du H-H, Guo D-Q, Xia M-X, Li G-M, Chen Z-X, Wang D-Y (2018) Toxicity evaluation of Wanzhou watershed of Yangtze Three Gorges Reservoir in the flood season in Caenorhabditis elegans. Sci Rep 8:6734PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Xiao G-S, Zhao L, Huang Q, Du H-H, Guo D-Q, Xia M-X, Li G-M, Chen Z-X, Wang D-Y (2018) Biosafety assessment of water samples from Wanzhou watershed of Yangtze Three Gorges Reservoir in the quiet season in Caenorhabditis elegans. Sci Rep 8:14102CrossRefGoogle Scholar
  7. 7.
    Yin J-C, Liu R, Jian Z-H, Yang D, Pu Y-P, Yin L-H, Wang D-Y (2018) Di (2-ethylhexyl) phthalate-induced reproductive toxicity involved in DNA damage-dependent oocyte apoptosis and oxidative stress in Caenorhabditis elegans. Ecotoxicol Environ Saf 163:298–306CrossRefGoogle Scholar
  8. 8.
    Wu Q-L, Han X-X, Wang D, Zhao F, Wang D-Y (2017) Coal combustion related fine particulate matter (PM2.5) induces toxicity in Caenorhabditis elegans by dysregulating microRNA expression. Toxicol Res 6:432–441CrossRefGoogle Scholar
  9. 9.
    Starnes DL, Lichtenberg SS, Unrine JM, Starnes CP, Oostveen EK, Lowry GV, Bertsch PM, Tsyusko OV (2016) Distinct transcriptomic responses of Caenorhabditis elegans to pristine and sulfidized silver nanoparticles. Environ Pollut 213:314–321PubMedCrossRefGoogle Scholar
  10. 10.
    Lewis JA, Gehman EA, Baer CE, Jackson DA (2013) Alterations in gene expression in Caenorhabditis elegans associated with organophosphate pesticide intoxication and recovery. BMC Genomics 14:291PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    McElwee MK, Ho LA, Chou JW, Smith MV, Freedman JH (2013) Comparative toxicogenomic responses of mercuric and methyl-mercury. BMC Genomics 14:698PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Chatterjee N, Kim Y, Yang J, Roca CP, Joo S, Choi J (2016) A systems toxicology approach reveals the Wnt-MAPK crosstalk pathway mediated reproductive failure in Caenorhabditis elegans exposed to graphene oxide (GO) but not to reduced graphene oxide (rGO). Nanotoxicology 11:76–86PubMedCrossRefGoogle Scholar
  13. 13.
    Menzel R, Yeo HL, Rienau S, Li S, Steinberg CEW, Stürzenbaum SR (2007) Cytochrome P450s and short-chain dehydrogenases mediate the toxicogenomic response of PCB52 in the nematode Caenorhabditis elegans. J Mol Biol 370:1–13PubMedCrossRefGoogle Scholar
  14. 14.
    Lewis JA, Szilagyi M, Gehman E, Dennis WE, Jackson DA (2009) Distinct patterns of gene and protein expression elicited by organophosphorus pesticides in Caenorhabditis elegans. BMC Genomics 10:202PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Roh J, Sim SJ, Yi J, Park K, Chung KH, Ryu D, Choi J (2009) Ecotoxicity of silver nanoparticles on the soil nematode Caenorhabditis elegans using functional ecotoxicogenomics. Environ Sci Technol 43:3933–3940PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Eom H, Kim H, Kim B, Chon T, Choi J (2014) Integrative assessment of benzene exposure to Caenorhabditis elegans using computational behavior and toxicogenomic analyses. Environ Sci Technol 48:8143–8151PubMedCrossRefGoogle Scholar
  17. 17.
    Menzel R, Swain SC, Hoess S, Claus E, Menzel S, Steinberg CEW, Reifferscheid G, Stürzenbaum SR (2009) Gene expression profiling to characterize sediment toxicity – a pilot study using Caenorhabditis elegans whole genome microarrays. BMC Genomics 10:160PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Vin uela A, Snoek LB, Riksen JAG, Kammenga JE (2010) Genome-wide gene expression analysis in response to organophosphorus pesticide chlorpyrifos and diazinon in C. elegans. PLoS ONE e12145:5Google Scholar
  19. 19.
    Sahu SN, Lewis J, Patel I, Bozdag S, Lee JH, Sprando R, Cinar HN (2013) Genomic analysis of stress response against arsenic in Caenorhabditis elegans. PLoS ONE 8:e66431PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Boehler CJ, Raines AM, Sunde RA (2014) Toxic-selenium and low-selenium transcriptomes in Caenorhabditis elegans: toxic selenium up-regulates oxidoreductase and down-regulates cuticle-associated genes. PLoS ONE 9:e101408PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Rudgalvyte M, VanDuyn N, Aarnio V, Heikkinen L, Peltonen J, Lakso M, Nass R, Wong G (2013) Methylmercury exposure increases lipocalin related (lpr) and decreases activated in blocked unfolded protein response (abu) genes and specific miRNAs in Caenorhabditis elegans. Toxicol Lett 222:189–196PubMedCrossRefGoogle Scholar
  22. 22.
    Cui Y, McBride SJ, Boyd WA, Alper S, Freedman JH (2007) Toxicogenomic analysis of Caenorhabditis elegans reveals novel genes and pathways involved in the resistance to cadmium toxicity. Genome Biol 8:R122PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Tsyusko OV, Unrine JM, Spurgeon D, Blalock E, Starnes D, Tseng M, Joice G, Bertsch PM (2012) Toxicogenomic responses of the model organism Caenorhabditis elegans to gold nanoparticles. Environ Sci Technol 46:4115–4124PubMedCrossRefGoogle Scholar
  24. 24.
    Ren M-X, Zhao L, Ding X-C, Krasteva N, Rui Q, Wang D-Y (2018) Developmental basis for intestinal barrier against the toxicity of graphene oxide. Part Fibre Toxicol 15:26PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Xiao G-S, Chen H, Krasteva N, Liu Q-Z, Wang D-Y (2018) Identification of interneurons required for the aversive response of Caenorhabditis elegans to graphene oxide. J Nanobiotechnol 16:45CrossRefGoogle Scholar
  26. 26.
    Ding X-C, Rui Q, Wang D-Y (2018) Functional disruption in epidermal barrier enhances toxicity and accumulation of graphene oxide. Ecotoxicol Environ Saf 163:456–464CrossRefGoogle Scholar
  27. 27.
    Zhao L, Kong J-T, Krasteva N, Wang D-Y (2018) Deficit in epidermal barrier induces toxicity and translocation of PEG modified graphene oxide in nematodes. Toxicol Res 7(6):1061–1070.  https://doi.org/10.1039/C8TX00136G CrossRefGoogle Scholar
  28. 28.
    Shao H-M, Han Z-Y, Krasteva N, Wang D-Y (2018) Identification of signaling cascade in the insulin signaling pathway in response to nanopolystyrene particles. Nanotoxicology in pressGoogle Scholar
  29. 29.
    Xiao G-S, Zhi L-T, Ding X-C, Rui Q, Wang D-Y (2017) Value of mir-247 in warning graphene oxide toxicity in nematode Caenorhabditis elegans. RSC Adv 7:52694–52701CrossRefGoogle Scholar
  30. 30.
    Wang Q-Q, Zhao S-Q, Zhao Y-L, Rui Q, Wang D-Y (2014) Toxicity and translocation of graphene oxide in Arabidopsis plants under stress conditions. RSC Adv 4:60891–60901CrossRefGoogle Scholar
  31. 31.
    Zhao Y-L, Yang J-N, Wang D-Y (2016) A microRNA-mediated insulin signaling pathway regulates the toxicity of multi-walled carbon nanotubes in nematode Caenorhabditis elegans. Sci Rep 6:23234PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Zhao Y-L, Wu Q-L, Li Y-P, Nouara A, Jia R-H, Wang D-Y (2014) In vivo translocation and toxicity of multi-walled carbon nanotubes are regulated by microRNAs. Nanoscale 6:4275–4284PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Ren M-X, Zhao L, Lv X, Wang D-Y (2017) Antimicrobial proteins in the response to graphene oxide in Caenorhabditis elegans. Nanotoxicology 11:578–590PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Zhuang Z-H, Li M, Liu H, Luo L-B, Gu W-D, Wu Q-L, Wang D-Y (2016) Function of RSKS-1-AAK-2-DAF-16 signaling cascade in enhancing toxicity of multi-walled carbon nanotubes can be suppressed by mir-259 activation in Caenorhabditis elegans. Sci Rep 6:32409PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Zhao Y-L, Yang R-L, Rui Q, Wang D-Y (2016) Intestinal insulin signaling encodes two different molecular mechanisms for the shortened longevity induced by graphene oxide in Caenorhabditis elegans. Sci Rep 6:24024PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Hasegawa K, Miwa S, Isomura K, Tsutsumiuchi K, Taniguchi H, Miwa J (2008) Acrylamide-responsive genes in the nematode Caenorhabditis elegans. Toxicol Sci 101:215–225PubMedCrossRefGoogle Scholar
  37. 37.
    Bruinsma JJ, Schneider DL, Davis DE, Kornfeld K (2008) Identification of mutations in Caenorhabditis elegans that cause resistance to high levels of dietary zinc and analysis using a genomewide map of single nucleotide polymorphisms scored by pyrosequencing. Genetics 179:811–828PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Munoz MJ, Riddle DL (2003) Positive selection of Caenorhabditis elegans mutants with increased stress resistance and longevity. Genetics 163:171–180PubMedPubMedCentralGoogle Scholar
  39. 39.
    Xu Z, Luo J, Li Y, Ma L (2015) The BLI-3/TSP-15/DOXA-1 dual oxidase complex is required for iodide toxicity in Caenorhabditis elegans. G3 5:195–203CrossRefGoogle Scholar
  40. 40.
    Rui Q, Zhao Y-L, Wu Q-L, Tang M, Wang D-Y (2013) Biosafety assessment of titanium dioxide nanoparticles in acutely exposed nematode Caenorhabditis elegans with mutations of genes required for oxidative stress or stress response. Chemosphere 93:2289–2296CrossRefGoogle Scholar
  41. 41.
    Ahn J, Eom H, Yang X, Meyer JN, Choi J (2014) Comparative toxicity of silver nanoparticles on oxidative stress and DNA damage in the nematode, Caenorhabditis elegans. Chemosphere 108:343–352PubMedCrossRefGoogle Scholar
  42. 42.
    Wu Q-L, Zhao Y-L, Li Y-P, Wang D-Y (2014) Susceptible genes regulate the adverse effects of TiO2-NPs at predicted environmental relevant concentrations on nematode Caenorhabditis elegans. Nanomedicine 10:1263–1271CrossRefGoogle Scholar
  43. 43.
    Wu Q-L, Cao X-O, Yan D, Wang D-Y, Aballay A (2015) Genetic screen reveals link between maternal-effect sterile gene mes-1 and P. aeruginosa-induced neurodegeneration in C. elegans. J Biol Chem 290:29231–29239PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Yu Y-L, Zhi L-T, Guan X-M, Wang D-Y, Wang D-Y (2016) FLP-4 neuropeptide and its receptor in a neuronal circuit regulate preference choice through functions of ASH-2 trithorax complex in Caenorhabditis elegans. Sci Rep 6:21485PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Sun L-M, Zhi L-T, Shakoor S, Liao K, Wang D-Y (2016) microRNAs involved in the control of innate immunity in Candida infected Caenorhabditis elegans. Sci Rep 6:36036PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Sun L-M, Liao K, Li Y-P, Zhao L, Liang S, Guo D, Hu J, Wang D-Y (2016) Synergy between PVP-coated silver nanoparticles and azole antifungal against drug-resistant Candida albicans. J Nanosci Nanotechnol 16:2325–2335CrossRefGoogle Scholar
  47. 47.
    Sun L-M, Liao K, Hong C-C, Wang D-Y (2017) Honokiol induces reactive oxygen species-mediated apoptosis in Candida albicans through mitochondrial dysfunction. PLoS ONE. 2017 12:e0172228PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Sun L-M, Liao K, Wang D-Y (2017) Honokiol induces superoxide production by targeting mitochondrial respiratory chain complex I in Candida albicans. PLoS ONE 12:e0184003PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Zhi L-T, Yu Y-L, Li X-Y, Wang D-Y, Wang D-Y (2017) Molecular control of innate immune response to Pseudomonas aeruginosa infection by intestinal let-7 in Caenorhabditis elegans. PLoS Pathog 13:e1006152PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Yu Y-L, Zhi L-T, Wu Q-L, Jiang L-N, Wang D-Y (2018) NPR-9 regulates innate immune response in Caenorhabditis elegans by antagonizing activity of AIB interneurons. Cell Mol Immunol 15:27–37CrossRefGoogle Scholar
  51. 51.
    Zhi L-T, Yu Y-L, Jiang Z-X, Wang D-Y (2017) mir-355 functions as an important link between p38 MAPK signaling and insulin signaling in the regulation of innate immunity. Sci Rep 7:14560PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Garcia SMDA, Tabach Y, Lourenço GF, Armakola M, Ruvkun G (2014) Identification of genes in toxicity pathways of trinucleotide-repeat RNA in C. elegans. Nat Struct Mol Biol 21:712–720PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Dayong Wang
    • 1
  1. 1.School of MedicineSoutheast UniversityNanjingChina

Personalised recommendations