Multivariate Modelling Using Copulas

  • Guangyuan GaoEmail author


Copulas are a family of multivariate distributions whose marginal distributions are uniform. At the end of reserving problems, we need to aggregate the outstanding liability distribution of each line of business or each type of benefit to get the total outstanding liability distribution. The dependence between them must be considered. In the Bayesian copulas framework, all the uncertainties and correlations are considered during the inferential process which is an advantage compared with the likelihood-based frequentist inference. In Sect. 6.1, the elements of copulas are reviewed, including Sklar’s theorem, parametric copulas, inference methods, etc. In Sect. 6.2, we discuss the usefulness of copulas in risk modelling generally. The copula is used to model the empirical dependence between risks while the marginal regression model is used to model the structural dependence. In Sect. 6.3, a bivariate Gaussian copula is used to aggregate the liabilities of the doctor benefit and the hospital benefit in WorkSafe Victoria. These two benefits are correlated positively even after removing the structural effects of the development periods.


  1. Anas, A., Boucher, J. P., & Cossette, H. (2015). Modeling dependence between loss triangles with hierarchical Archimedean copulas. ASTIN Bulletin, 45, 577–599.MathSciNetCrossRefGoogle Scholar
  2. Brehm, P. J., Perry, G., Venter, G. G., & Witcraft, S. (2007). Enterprise risk analysis for property and liability insurance companies: A practical guide to standard models and emerging solutions. New York: Guy Carpenter & Company.Google Scholar
  3. Czado, C., Kastenmeier, R., Brechmann, E. C., & Min, A. (2012). A mixed copula model for insurance claims and claim sizes. Scandinavian Actuarial Journal, 2012, 278–305.MathSciNetCrossRefGoogle Scholar
  4. Danaher, P. J., & Smith, M. S. (2011). Modeling multivariate distributions using copulas: Applications in marketing. Marketing Science, 30, 4–21.CrossRefGoogle Scholar
  5. De Jong, P. (2012). Modeling dependence between loss triangles. North American Actuarial Journal, 16, 74–86.MathSciNetCrossRefGoogle Scholar
  6. Embrechts, P., Lindskog, F., & McNeil, A. (2001). Modelling dependence with copulas and applications to risk management.
  7. Embrechts, P., & Hofert, M. (2013). Statistical inference for copulas in high dimensions: A simulation study. ASTIN Bulletin, 43, 81–95.MathSciNetCrossRefGoogle Scholar
  8. Feldblum, S. (2010). Dependency modeling. Casualty Actuarial Society Study Notes.Google Scholar
  9. Fréchet, M. (1935). Generalisations du theoreme des probabilites totales. Fundamenta Mathematicae, 25, 379–387.CrossRefGoogle Scholar
  10. Frees, E. W., & Valdez, E. A. (1998). Understanding relationships using copulas. North American Actuarial Journal, 2, 1–25.MathSciNetCrossRefGoogle Scholar
  11. Genest, C., & Rivest, L.-P. (1993). Statistical inference procedures for bivariate Archimedean copulas. Journal of the American statistical Association, 88, 1034–1043.MathSciNetCrossRefGoogle Scholar
  12. Hoff, P. D. (2007). Extending the rank likelihood for semiparametric copula estimation. The Annals of Applied Statistics, 1, 265–283.MathSciNetCrossRefGoogle Scholar
  13. Joe, H. (2014). Dependence modeling with copulas. New York: Chapman & Hall.CrossRefGoogle Scholar
  14. Krämer, N., Brechmann, E. C., Silvestrini, D., and Czado, C. (2013). Total loss estimation using copula-based regression models. Insurance: Mathematics and Economics, 53, 829–839.MathSciNetzbMATHGoogle Scholar
  15. Kruskal, W. H. (1958). Ordinal measures of association. Journal of the American Statistical Association, 53, 814–861.MathSciNetCrossRefGoogle Scholar
  16. Meng, S. and Gao, G. (2018). Compound Poisson claims reserving models: Extensions and inference. ASTIN Bulletin, 48, 1137–1156.CrossRefGoogle Scholar
  17. Merz, M., Wüthrich, M. V., & Hashorva, E. (2013). Dependence modelling in multivariate claims run-off triangles. Annals of Actuarial Science, 7, 3–25.CrossRefGoogle Scholar
  18. Nelsen, R. B. (2013). An introduction to copulas. New York: Springer.zbMATHGoogle Scholar
  19. Pitt, M., Chan, D., & Kohn, R. (2006). Efficient Bayesian inference for Gaussian copula regression models. Biometrika, 93, 537–554.MathSciNetCrossRefGoogle Scholar
  20. Shi, P. (2014). A copula regression for modeling multivariate loss triangles and quantifying reserving variability. ASTIN Bulletin, 44, 85–102.MathSciNetCrossRefGoogle Scholar
  21. Shi, P., & Frees, E. W. (2011). Dependent loss reserving using copulas. ASTIN Bulletin, 41, 449–486.MathSciNetGoogle Scholar
  22. Shi, P., Basu, S., & Meyers, G. G. (2012). A Bayesian log-normal model for multivariate loss reserving. North American Actuarial Journal, 16, 29–51.MathSciNetCrossRefGoogle Scholar
  23. Sklar, M. (1959). Fonctions de répartition à n dimensions et leurs marges. Publications de l’Institut de Statistique de l’Université Paris, 8, 229–231.zbMATHGoogle Scholar
  24. Smith, M. S. (2011). Bayesian approaches to copula modelling. SSRN, ID 1974297.Google Scholar
  25. Trivedi, P. K., & Zimmer, D. M. (2007). Copula Modeling: An Introduction for Practitioners. Boston: Now Publishers.zbMATHGoogle Scholar
  26. Venter, G. G. (2002). Tails of copulas. Proceedings of the Casualty Actuarial Society, 89, 68–113.Google Scholar
  27. Zhang, Y., Dukic, V., & Guszcza, J. (2012). A Bayesian non-linear model for forecasting insurance loss payments. Journal of the Royal Statistical Society A, 175, 637–656.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.School of StatisticsRenmin University of ChinaBeijingChina

Personalised recommendations