Advertisement

Advanced Bayesian Computation

  • Guangyuan GaoEmail author
Chapter

Abstract

The popularity of Bayesian statistics is largely due to advances in computing and developments in computational methods. Currently, there are two main types of Bayesian computational methods. The first type involves iterative Monte Carlo simulation and includes the Gibbs sampler, the Metropolis-Hastings algorithm, Hamiltonian sampling etc. These first type methods typically generate a Markov chain whose stationary distribution is the target distribution. The second type involves distributional approximation and includes Laplace approximation (Laplace 1785, 1810), variational Bayes (Jordan et al. 1999), etc. These second type methods try to find a distribution with the analytical form that best approximates the target distribution. In Sect. 3.1, we review Markov chain Monte Carlo (MCMC) methods including the general Metropolis-Hastings algorithm (M-H), Gibbs sampler with conjugacy, and Hamiltonian Monte Carlo (HMC) algorithm (Neal 1994). Section 3.2 discusses the convergence and efficiency of the above sampling methods. We then show how to specify a Bayesian model and draw model inferences using OpenBUGS and Stan in Sect. 3.3. Section 3.4 provides a brief summary on the mode-based approximation methods including Laplace approximation and Bayesian variational inference. Finally, in Sect. 3.5, a full Bayesian analysis is performed on a biological data set from Gelfand et al. (1990). The key concepts and the computational tools discussed in this chapter are demonstrated in this section.

References

  1. Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet allocation. Journal of Machine Learning Research, 3, 993–1022.zbMATHGoogle Scholar
  2. Brooks, S. P., & Gelman, A. (1998). General methods for monitoring convergence of iterative simulations. Journal of Computational and Graphical Statistics, 7, 434–455.MathSciNetGoogle Scholar
  3. Carpenter, B., Gelman, A., Hoffman, M., Lee, D., Goodrich, B., Betancourt, M., et al. (2017). Stan: A probabilistic programming language. Journal of Statistical Software, 76, 1–32.Google Scholar
  4. Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society B, 39, 1–38.MathSciNetzbMATHGoogle Scholar
  5. Duane, S., Kennedy, A. D., Pendleton, B. J., & Roweth, D. (1987). Hybrid Monte Carlo. Physics Letters B, 195, 216–222.CrossRefGoogle Scholar
  6. Gelfand, A. E., Hills, S. E., Racinepoon, A., & Smith, A. F. M. (1990). Illustration of Bayesian-inference in normal data models using Gibbs sampling. Journal of the American Statistical Association, 85, 972–985.CrossRefGoogle Scholar
  7. Gelman, A., Lee, D., & Guo, J. (2015). Stan: A probabilistic programming language for Bayesian inference and optimization. Journal of Educational and Behavioral Statistics, 40, 530–543 .CrossRefGoogle Scholar
  8. Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7, 457–472.CrossRefGoogle Scholar
  9. Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (2014). Bayesian data analysis (3rd ed.). Boca Raton: Chapman & Hall.zbMATHGoogle Scholar
  10. Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721–741.CrossRefGoogle Scholar
  11. Gershman, S., Hoffman, M., & Blei, D. (2012). Nonparametric variational inference. In 29th International Conference on Machine Learning.Google Scholar
  12. Gilks, W. R., & Wild, P. (1992). Adaptive rejection sampling for Gibbs sampling. Journal of the Royal Statistical Society C, 41, 337–348.zbMATHGoogle Scholar
  13. Gilks, W. R., Richardson, S., & Spiegelhalter, D. J. (1996). Monte Carlo Markov chain in practice. New York: Chapman & Hall.zbMATHGoogle Scholar
  14. Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57, 97–109.MathSciNetCrossRefGoogle Scholar
  15. Hills, S. E., & Smith, A. F. M. (1992). Parameterization issues in Bayesian inference. London: Oxford University Press.Google Scholar
  16. Hoffman, M. D., Blei, D. M., Wang, C., & Paisley, J. (2013). Stochastic variational inference. Journal of Machine Learning Research, 14, 1303–1347.MathSciNetzbMATHGoogle Scholar
  17. Homan, M. D., & Gelman, A. (2014). The no-u-turn sampler: Adaptively setting path lengths in Hamiltonian Monte Carlo. The Journal of Machine Learning Research, 15, 1593–1623.MathSciNetzbMATHGoogle Scholar
  18. Jaakkola, T. S., & Jordan, M. I. (2000). Bayesian parameter estimation via variational methods. Statistics and Computing, 10, 25–37.CrossRefGoogle Scholar
  19. Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., & Saul, L. K. (1999). An introduction to variational methods for graphical models. Machine Learning, 37, 183–233.CrossRefGoogle Scholar
  20. Kucukelbir, A., Ranganath, R., Gelman, A., & Blei, D. M. (2015). Automatic variational inference in Stan. arXiv:1506.03431.
  21. Laplace, P. S. (1785). Memoire sur les approximations des formules qui sont fonctions de tres grands nombres. In Memoires de l’Academie Royale des Sciences.Google Scholar
  22. Laplace, P. S. (1810). Memoire sur les approximations des formules qui sont fonctions de tres grands nombres, et sur leur application aux probabilites. In Memoires de l’Academie des Science de Paris.Google Scholar
  23. Lunn, D. J., Thomas, A., Best, N., & Spiegelhalter, D. (2000). WinBUGS–A Bayesian modelling framework: Concepts, structure, and extensibility. Statistics and Computing, 10, 325–337.CrossRefGoogle Scholar
  24. Lunn, D., Jackson, C., Best, N., Thomas, A., & Spiegelhalter, D. (2012). The BUGS book: A practical introduction to Bayesian analysis. Boca Raton: Chapman & Hall.zbMATHGoogle Scholar
  25. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation of state calculations by fast computing machines. Journal of Chemical Physics, 21, 1087–1092.CrossRefGoogle Scholar
  26. Neal, R. M. (2011). MCMC using Hamiltonian dynamics. In Handbook of Markov chain Monte Carlo.Google Scholar
  27. Neal, R. M. (1994). An improved acceptance procedure for the hybrid Monte Carlo algorithm. Journal of Computational Physics, 111, 194–203.MathSciNetCrossRefGoogle Scholar
  28. Neal, R. M. (2003). Slice sampling. The Annals of Statistics, 31, 705–741.MathSciNetCrossRefGoogle Scholar
  29. Nocedal, J., & Wright, S. (2006). Numerical optimization. New York: Springer Science & Business Media.zbMATHGoogle Scholar
  30. Roberts, G. O., & Sahu, S. K. (1997). Updating schemes, correlation structure, blocking and parameterization for the Gibbs sampler. Journal of the Royal Statistical Society B, 59, 291–317.MathSciNetCrossRefGoogle Scholar
  31. Spiegelhalter, D., Thomas, A., Best, N., and Lunn, D. (2003). WinBUGS user manual. http://www.mrc-bsu.cam.ac.uk/wp-content/uploads/manual14.pdf.
  32. Stan Development Team (2014). Stan modeling language: User’s guide and reference manual. http://mc-stan.org/users/documentation/
  33. Tanner, M. A., & Wong, W. H. (1987). The calculation of posterior distributions by data augmentation. Journal of the American statistical Association, 82, 528–540.MathSciNetCrossRefGoogle Scholar
  34. Vehtari, A., Gelman, A., & Gabry, J. (2015). Efficient implementation of leave-one-out cross-validation and WAIC for evaluating fitted Bayesian models. arXiv:1507.04544.

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.School of StatisticsRenmin University of ChinaBeijingChina

Personalised recommendations