CS-MRI Benchmarks and Current Trends

  • Bhabesh DekaEmail author
  • Sumit Datta
Part of the Springer Series on Bio- and Neurosystems book series (SSBN, volume 9)


A significant progress has been already accomplished in compressed sensing magnetic resonance image reconstruction research. A few recent works have successfully integrated CS-MRI into the existing MRI scanner for clinical studies and within a short span of time it would be also available at a commercial scale. This chapter mainly aims to throw lights upon creating a set of common goals that practical CS-MRI reconstruction algorithms should project for successful implementation in medical diagnosis, and a few current research trends.


  1. 1.
    Aharon, M., Elad, M., Bruckstein, A.: k-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54(11), 4311–4322 (2006)CrossRefGoogle Scholar
  2. 2.
    Aja-Fernandez, S., San Jose Estepar, R., Alberola Lopez, C., Westin, C.F.: Image quality assessment based on local variance. In: 28th IEEE EMBS, pp. 4815–4818. New York City, USA (2006)Google Scholar
  3. 3.
    Bilgin, A., Kim, Y., Liu, F., Nadar, M.S.: Dictionary design for compressed sensing MRI. Proc. Intl. Soc. Mag. Reson. Med, 4887 (2010)Google Scholar
  4. 4.
    Blanchard, J.D., Tanner, J.: GPU accelerated greedy algorithms for compressed sensing. Math. Program. Comput. 5(3), 267–304 (2013)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Borghi, A., Darbon, J., Peyronnet, S., Chan, T.F., Osher, S.: A simple compressive sensing algorithm for parallel many-core architectures. J. Signal Process. Syst. 71(1), 1–20 (2013)CrossRefGoogle Scholar
  6. 6.
    Chen, C., Huang, J.: Exploiting the wavelet structure in compressed sensing MRI. Magn. Reson. Imaging 32, 1377–1389 (2014)CrossRefGoogle Scholar
  7. 7.
    Chen, C., Li, Y., Huang, J.: Forest sparsity for multi-channel compressive sensing. IEEE Trans. Signal Process. 62(11), 2803–2813 (2014)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Chen, Y., Ye, X., Huang, F.: A novel method and fast algorithm for MR image reconstruction with significantly under-sampled data. Inverse Probl. Imaging 4, 223–240 (2010)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Chou, C.H., Li, Y.C.: A perceptually tuned subband image coder based on the measure of just-noticeable-distortion profile. IEEE Trans. Circuits Syst. Video Technol. 5(6), 467–476 (1995)CrossRefGoogle Scholar
  10. 10.
    Chow, L.S., Paramesran, R.: Review of medical image quality assessment. Biomed. Signal Process. Control. 27, 145–154 (2016)CrossRefGoogle Scholar
  11. 11.
    Chow, L.S., Rajagopal, H., Paramesran, R.: Correlation between subjective and objective assessment of magnetic resonance MR images. Magn. Reson. Imaging 34(6), 820–831 (2016)CrossRefGoogle Scholar
  12. 12.
    Datta, S., Deka, B.: Magnetic resonance image reconstruction using fast interpolated compressed sensing. J. Opt., 1–12 (2017)Google Scholar
  13. 13.
    Datta, S., Deka, B.: Multi-channel, multi-slice, and multi-contrast compressed sensing MRI using weighted forest sparsity and joint TV regularization priors. In: 7th International Conference on Soft Computing for Problem Solving (SocProS) (2017)Google Scholar
  14. 14.
    Datta, S., Deka, B.: An efficient interpolated compressed sensing reconstruction scheme for 3D MRI (2018). Manuscript submitted for publicationCrossRefGoogle Scholar
  15. 15.
    Deka, B., Datta, S., Handique, S.: Wavelet tree support detection for compressed sensing MRI reconstruction. IEEE Signal Process. Lett. 25(5), 730–734 (2018)CrossRefGoogle Scholar
  16. 16.
    Hollingsworth, K.G.: Reducing acquisition time in clinical MRI by data undersampling and compressed sensing reconstruction. Phys. Med. Biol. 60(21), R297 (2015)CrossRefGoogle Scholar
  17. 17.
    Jaspan, O., Fleysher, R., Lipton, M.: Compressed sensing MRI: A review of the clinical literature. Br. J. Radiol. 88(1056), 1–12 (2015)CrossRefGoogle Scholar
  18. 18.
    Kim, D., Trzasko, J., Smelyanskiy, M., Haider, C., Dubey, P., Manduca, A.: High-performance 3D compressive sensing MRI reconstruction using many-core architectures. Int. J. Biomed. Imaging 2011, 1–11 (2011)CrossRefGoogle Scholar
  19. 19.
    Liang, D., Xu, G., Wang, H., King, K.F., Xu, D., Ying, L.: Toeplitz random encoding MR imaging using compressed sensing. IEEE ISBI 2009, 270–273 (2009)Google Scholar
  20. 20.
    Lustig, M.: Sparse MRI. Ph.D. thesis, Electrical Engineering, Stanford University (2008)Google Scholar
  21. 21.
    Lustig, M., Keutzer, K., V.S.: The Berkeley Par Lab: progress in the parallel computing landscape, chap. In: Introduction to parallelizing compressed sensing magnetic resonance imaging, pp. 105–139. Microsoft Corporation (2013)Google Scholar
  22. 22.
    Majumdar, A.: Compressed Sensing for Magnetic Resonance Image Reconstruction. Cambridge University Press, New York (2015)CrossRefGoogle Scholar
  23. 23.
    Mann, L.W., Higgins, D.M., Peters, C.N., Cassidy, S., Hodson, K.K., Coombs, A., Taylo, R., Hollingsworth, K.G.: Accelerating MR imaging liver steatosis measurement using combined compressed sensing and parallel imaging: a quantitative evaluation. Radiology 278(1), 247–256 (2016)CrossRefGoogle Scholar
  24. 24.
    Murphey, M., Alley, M., Demmel, J., Keutzer, K., Vasanawala, S., Lustig, M.: Fast \(\ell _1\)-SPIRiT compressed sensing parralel imaging MRI: Scalable parallel implementation and clinically feasible runtime. IEEE Trans. Med. Imaging 31(6), 1250–1262 (2012)CrossRefGoogle Scholar
  25. 25.
    Otazo, R., Sodickson, D.K.: Adaptive compressed sensing MRI. In: Proceedings of ISMRM, p. 4867. (2010)Google Scholar
  26. 26.
    Pang, Y., Zhang, X.: Interpolated compressed sensing for 2D multiple slice fast MR imaging. Ed. Jonathan A. Coles. PLoS ONE 8(2), 1–5 (2013)CrossRefGoogle Scholar
  27. 27.
    Prieto, F., Guarini, M., Tejos, C., Irarrazaval, P.: Metrics for quantifying the quality of MR images. In: Proceedings of 17th Annual Meeting ISMRM, vol. 17, p. 4696 (2009)Google Scholar
  28. 28.
    Qu, X., Cao, X., Guo, D., Hu, C., Chen, Z.: Combined sparsifying transforms for compressed sensing mri. Electron. Lett. 46(2), 121–123 (2010)CrossRefGoogle Scholar
  29. 29.
    Ravishankar, S., Bresler, Y.: Mr image reconstruction from highly undersampled k-space data by dictionary learning. IEEE Trans. Med. Imaging 30(5), 1028–1041 (2011)CrossRefGoogle Scholar
  30. 30.
    Sabbagh, M., Uecker, M., Powell, A.J, Leeser, M., Moghari, M.H.: Cardiac MRI compressed sensing image reconstruction with a graphics processing unit. In: 2016 10th International Symposium on Medical Information and Communication Technology (ISMICT), pp. 1–5 (2016)Google Scholar
  31. 31.
    Schaetz, S., Voit, D., Frahm, J., Uecker, M.: Accelerated computing in magnetic resonance imaging: Real-time imaging using nonlinear inverse reconstruction. Comput. Math. Methods Med. 2017, 1–11 (2017)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Sinha, N., Ramakrishnan, A.: Quality assessment in magnetic resonance images. Crit. Rev. Biomed. Eng. 38, 127–141 (2010)CrossRefGoogle Scholar
  33. 33.
    Toledano-Massiah, S., Sayadi, A., de Boer, R.A., Gelderblom, J., Mahdjoub, R., Gerber, S., Zuber, M., Zins, M., Hodel, J.: Accuracy of the compressed sensing accelerated 3d-flair sequence for the detection of ms plaques at 3t. AJNR. Am. J. Neuroradiol., 1–5 (2018)Google Scholar
  34. 34.
    Uecker, M., Ong, F., Tamir, J.I., Bahri, D., Virtue, P., Cheng, J.Y., Zhang, T., Lustig, M.: Berkeley advanced reconstruction toolbox. Proc. Intl. Soc. Mag. Reson. Med. 23, 2486 (2015)Google Scholar
  35. 35.
    Vasanawala, S., Murphy, M., Alley, M., Lai, P., Keutzer, K., Pauly, J., Lustig, M.: Practical parallel imaging compressed sensing MRI: Summary of two years of experience in accelerating body MRI of pediatric patients. In: IEEE International Symposium on Biomedical Imaging: From Nano to Macro 2011, pp. 1039–1043. Chicago, IL (2011)Google Scholar
  36. 36.
    Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)CrossRefGoogle Scholar
  37. 37.
    Yin, W., Morgan, S., Yang, J., Zhang, Y.: Practical compressive sensing with toeplitz and circulant matrices. In: Proc. SPIE Vis. Commun. Image Process. 7744, 1–10 (2010)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringTezpur UniversityTezpurIndia

Personalised recommendations