Selectivity of Antimicrobial Peptides: A Complex Interplay of Multiple Equilibria

  • Sara Bobone
  • Lorenzo StellaEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1117)


Antimicrobial peptides (AMPs) attack bacterial membranes selectively, killing microbes at concentrations that cause no toxicity to the host cells. This selectivity is not due to interaction with specific receptors but is determined by the different lipid compositions of the membranes of the two cell types and by the peculiar physicochemical properties of AMPs, particularly their cationic and amphipathic character. However, the available data, including recent studies of peptide-cell association, indicate that this picture is excessively simplistic, because selectivity is modulated by a complex interplay of several interconnected phenomena. For instance, conformational transitions and self-assembly equilibria modulate the effective peptide hydrophobicity, the electrostatic and hydrophobic contributions to the membrane-binding driving force are nonadditive, and kinetic processes can play an important role in selective bacterial killing in the presence of host cells. All these phenomena and their bearing on the final activity and toxicity of AMPs must be considered in the definition of design principles to optimize peptide selectivity.


Antimicrobial peptides Host defense peptides Selectivity Toxicity Peptide-membrane association Aggregation Hydrophobicity Amphipathicity 



The authors gratefully thank Dr. F. Savini and Dr. A. Papi for their help with Figs. 11.3 and 11.5. Research in our lab is currently supported by the Italian Ministry for Education, University and Research (grant PRIN 20157WW5EH_007), and by the Italian Association for Cancer Research (AIRC grant IG 2016 19171).


  1. Abraham T, Lewis RN, Hodges RS, McElhaney RN (2005) Isothermal titration calorimetry studies of the binding of the antimicrobial peptide gramicidin S to phospholipid bilayer membranes. Biochemistry 44(33):11279–11285CrossRefPubMedGoogle Scholar
  2. Agrawal A, Weisshaar JC (2018) Effects of alterations of the E. coli lipopolysaccharide layer on membrane permeabilization events induced by Cecropin A. Biochim Biophys Acta 1860(7):1470–1479CrossRefGoogle Scholar
  3. Ahmad A, Yadav SP, Asthana N, Mitra K, Srivastava SP, Ghosh JK (2006) Utilization of an amphipathic leucine zipper sequence to design antibacterial peptides with simultaneous modulation of toxic activity against human red blood cells. J Biol Chem 281(31):22029–22038CrossRefPubMedGoogle Scholar
  4. Ahmad A, Asthana N, Azmi S, Srivastava RM, Pandey BK, Yadav V, Ghosh JK (2009a) Structure–function study of cathelicidin-derived bovine antimicrobial peptide BMAP-28: design of its cell-selective analogs by amino acid substitutions in the heptad repeat sequences. Biochim Biophys Acta 1788(11):2411–2420CrossRefPubMedGoogle Scholar
  5. Ahmad A, Azmi S, Srivastava RM, Srivastava S, Pandey BK, Saxena R, Bajpai VK, Ghosh JK (2009b) Design of nontoxic analogues of cathelicidin-derived bovine antimicrobial peptide BMAP-27: the role of leucine as well as phenylalanine zipper sequences in determining its toxicity. Biochemistry 48(46):10905–10917CrossRefPubMedGoogle Scholar
  6. Akhtar MS, Qaisar A, Irfanullah J, Iqbal J (2005) Antimicrobial peptide 99mTc-ubiquicidin 29-41 as human infection-imaging agent: clinical trial. J Nucl Med 46(4):567–573PubMedGoogle Scholar
  7. Akhtar MS, Imran MB, Nadeem MA, Shahid A (2012) Antimicrobial peptides as infection imaging agents: better than radiolabeled antibiotics. Int J Pept. CrossRefGoogle Scholar
  8. Akram AR, Avlonitis N, Lilienkampf A, Perez-Lopez AM, McDonald N, Chankeshwara SV, Scholefield E, Haslett C, Bradley M, Dhaliwal K (2015) A labelled-ubiquicidin antimicrobial peptide for immediate in situ optical detection of live bacteria in human alveolar lung tissue. Chem Sci 6(12):6971–6979CrossRefPubMedPubMedCentralGoogle Scholar
  9. Alba A, López-Abarrategui C, Otero-González AJ (2012) Host defense peptides: an alternative as antiinfective and immunomodulatory therapeutics. Biopolymers 98(4):251–267CrossRefPubMedGoogle Scholar
  10. Allende D, Simon SA, McIntosh TJ (2005) Melittin-induced bilayer leakage depends on lipid material properties: evidence for toroidal pores. Biophys J 88(3):1828–1837CrossRefPubMedGoogle Scholar
  11. Aloia RC, Tian H, Jensen FC (1993) Lipid composition and fluidity of the human immunodeficiency virus envelope and host cell plasma membranes. Proc Natl Acad Sci U S A 90(11):5181–5185CrossRefPubMedPubMedCentralGoogle Scholar
  12. Ames GF (1968) Lipids of Salmonella typhimurium and Escherichia coli: structure and metabolism. J Bacteriol 95(3):833–843PubMedPubMedCentralGoogle Scholar
  13. Andra J, Goldmann T, Ernst CM, Peschel A, Gutsmann T (2011) Multiple peptide resistance factor (MprF)-mediated resistance of Staphylococcus aureus against antimicrobial peptides coincides with a modulated peptide interaction with artificial membranes comprising lysyl-phosphatidylglycerol. J Biol Chem 286(21):18692–18700CrossRefPubMedPubMedCentralGoogle Scholar
  14. Arcidiacono S, Soares JW, Meehan AM, Marek P, Kirby R (2009) Membrane permeability and antimicrobial kinetics of cecropin P1 against Escherichia coli. J Pept Sci 15(6):398–403CrossRefPubMedGoogle Scholar
  15. Assadi M, Vahdat K, Nabipour I, Sehhat MR, Hadavand F, Javadi H, Tavakoli A, Saberifard J, Kalantarhormozi MR, Zakani A, Eftekhari M (2011) Diagnostic value of 99mTc-ubiquicidin scintigraphy for osteomyelitis and comparisons with 99mTc-methylene diphosphonate scintigraphy and magnetic resonance imaging. Nucl Med Commun 32(8):716–723CrossRefPubMedGoogle Scholar
  16. Asthana N, Yadav SP, Ghosh JK (2004) Dissection of antibacterial and toxic activity of Melittin: a leucine zipper motif plays a crucial role in determining its hemolytic activity but not antibacterial activity. J Biol Chem 279(53):55042–55050CrossRefPubMedGoogle Scholar
  17. Avrahami D, Shai Y (2002) Conjugation of a magainin analogue with lipophilic acids controls hydrophobicity, solution assembly, and cell selectivity. Biochemistry 41(7):2254–2263CrossRefPubMedGoogle Scholar
  18. Avrahami D, Shai Y (2004) A new group of antifungal and antibacterial lipopeptides derived from non-membrane active peptides conjugated to palmitic acid. J Biol Chem 279(13):12277–12285CrossRefPubMedGoogle Scholar
  19. Bacalum M, Radu M (2015) Cationic antimicrobial peptides cytotoxicity on mammalian cells: an analysis using therapeutic index integrative concept. Int J Pept Res Ther 21:47–55CrossRefGoogle Scholar
  20. Bagheri M, Amininasab M, Dathe M (2018) Arg/Trp-rich cyclic α/β-antimicrobial peptides: the roles of H-bonding and hydrophobic/hydrophilic solvent accessible surface areas upon the activity and membrane selectivity. Chem Eur J. 24(53):14242–14253Google Scholar
  21. Ballas SK, Krasnow SH (1980) Structure of erythrocyte membrane and its transport functions. Ann Clin Lab Sci 10(3):209–219PubMedGoogle Scholar
  22. Beschiaschvili G, Seelig J (1990) Melittin binding to mixed phosphatidylglycerol/phosphatidylcholine membranes. Biochemistry 29(1):52–58CrossRefPubMedGoogle Scholar
  23. Bessalle R, Kapitkovsky A, Gorea A, Shalit I, Fridkin M (1990) All-D-magainin: chirality, antimicrobial activity and proteolytic resistance. FEBS Lett 274(1–2):151–155PubMedGoogle Scholar
  24. Bessalle R, Haas H, Goria A, Shalit I, Fridkin M (1992) Augmentation of the antibacterial activity of magainin by positive-charge chain extension. Antimicrob Agents Chemother 36(2):313–317CrossRefPubMedPubMedCentralGoogle Scholar
  25. Bhatt J, Mukherjee A, Shinto A, Karuppusamy KK, Korde A, Kumar M, Sarma HD, Repaka K, Dash A (2018) Gallium-68 labeled Ubiquicidin derived octapeptide as a potential infection imaging agent. Nucl Med Biol 62–63:47–53CrossRefPubMedGoogle Scholar
  26. Bishop DG, Rutberg L, Samuelsson B (1967) The chemical composition of the cytoplasmic membrane of Bacillus subtilis. Eur J Biochem 2(4):448–453CrossRefPubMedGoogle Scholar
  27. Bland JM, De Lucca AJ, Jacks TJ, Vigo CB (2001) All-D-cecropin B: synthesis, conformation, lipopolysaccharide binding, and antibacterial activity. Mol Cell Biochem 218(1–2):105–111CrossRefPubMedGoogle Scholar
  28. Blondelle SE, Houghten RA (1991) Hemolytic and antimicrobial activities of the twenty-four individual omission analogs of melittin. Biochemistry 30(19):4671–4678CrossRefPubMedGoogle Scholar
  29. Bobone S, Piazzon A, Orioni B, Pedersen JZ, Nan YH, Hahm KS, Shin SH, Stella L (2011) The thin line between cell-penetrating and antimicrobial peptides: the case of Pep-1 and Pep-1-K. J Pept Sci 17(5):335–341CrossRefPubMedGoogle Scholar
  30. Bobone S, Roversi D, Giordano L, De Zotti M, Formaggio F, Toniolo C, Park Y, Stella L (2012) The lipid dependence of antimicrobial peptide activity is an unreliable experimental test for different pore models. Biochemistry 51(51):10124–10126CrossRefPubMedGoogle Scholar
  31. Bobone S, Bocchinfuso G, Park Y, Palleschi A, Hahm KS, Stella L (2013) The importance of being kinked: role of Pro residues in the selectivity of the helical antimicrobial peptide P5. J Pept Sci 19(12):758–769CrossRefPubMedGoogle Scholar
  32. Bocchinfuso G, Palleschi A, Orioni B, Grande G, Formaggio F, Toniolo C et al (2009) Different mechanisms of action of antimicrobial peptides: insights from fluorescence spectroscopy experiments and molecular dynamics simulations. J Pept Sci Off Publ Eur Pept Soc 15(9):550–558Google Scholar
  33. Bocchinfuso G, Bobone S, Mazzuca C, Palleschi A, Stella L (2011) Fluorescence spectroscopy and molecular dynamics simulations in studies on the mechanism of membrane destabilization by antimicrobial peptides. Cell Mol Life Sci 68(13):2281–2301CrossRefPubMedGoogle Scholar
  34. Boyd KJ, Alder NN, May ER (2017) Buckling under pressure: curvature-based lipid segregation and stability modulation in cardiolipin-containing bilayers. Langmuir 33(27):6937–6946CrossRefPubMedPubMedCentralGoogle Scholar
  35. Braun S, Pokorná S, Šachl R, Hof M, Heerklotz H, Hoernke M (2017) Biomembrane permeabilization: statistics of individual leakage events harmonize the interpretation of vesicle leakage. ACS Nano 12(1):813–819CrossRefPubMedGoogle Scholar
  36. Brender JR, McHenry AJ, Ramamoorthy A (2012) Does cholesterol play a role in the bacterial selectivity of antimicrobial peptides? Front Immunol 3:195CrossRefPubMedPubMedCentralGoogle Scholar
  37. Broekhuyse RM (1969) Quantitative two-dimensional thin-layer chromatography of blood phospholipids. Clin Chim Acta 23(3):457–461CrossRefPubMedGoogle Scholar
  38. Brouwer CP, Bogaards SJ, Wulferink M, Velders MP, Welling MM (2006) Synthetic peptides derived from human antimicrobial peptide ubiquicidin accumulate at sites of infections and eradicate (multi-drug resistant) Staphylococcus aureus in mice. Peptides 27(11):2585–2591CrossRefPubMedGoogle Scholar
  39. Brouwer CPJM, Sarda-Mantel L, Meulemans A, Guludec DL, Welling MM (2008) The use of technetium-99m radiolabeled human antimicrobial peptides for infection specific imaging. Mini-Rev Med Chem 8(10):1039–1052CrossRefPubMedGoogle Scholar
  40. Bulet P, Stocklin R (2005) Insect antimicrobial peptides: structures, properties and gene regulation. Protein Pept Lett 12(1):3–11CrossRefPubMedGoogle Scholar
  41. Bütikofer P, Lin ZW, Chiu DT, Lubin B, Kuypers FA (1990) Transbilayer distribution and mobility of phosphatidylinositol in human red blood cells. J Biol Chem 265(27):16035–16038PubMedGoogle Scholar
  42. Büttner K, Blondelle SE, Ostresh JM, Houghten RA (1992) Perturbation of peptide conformations induced in anisotropic environments. Biopolymers 32(6):575–583CrossRefPubMedGoogle Scholar
  43. Carneiro VA, Duarte HS, Prado MGV, Silva ML, Teixeira M, dos Santos YM, Vasconcelos IB, Cunha RMS (2015) Antimicrobial peptides: from synthesis to clinical perspectives. In: The battle against microbial pathogens: basic science, technological advances and educational programs, 1st edn. Formatex Research Center, Spain, pp 81–90Google Scholar
  44. Carotenuto A, Malfi S, Saviello MR, Campiglia P, Gomez-Monterrey I, Mangoni ML, Marcellini Hercolani Gaddi L, Novellino E, Grieco P (2008) A different molecular mechanism underlying antimicrobial and hemolytic actions of temporins A and L. J Med Chem 51(8):2354–2362CrossRefPubMedGoogle Scholar
  45. Chairatana P, Nolan EM (2014) Molecular basis for self-assembly of a human host-defense peptide that entraps bacterial pathogens. J Am Chem Soc 136(38):13267–13276CrossRefPubMedPubMedCentralGoogle Scholar
  46. Chapuis H, Slaninová J, Bednárová L, Monincová L, Buděšínský M, Čeřovský V (2012) Effect of hydrocarbon stapling on the properties of α-helical antimicrobial peptides isolated from the venom of hymenoptera. Amino Acids 43(5):2047–2058CrossRefPubMedGoogle Scholar
  47. Chen L, Liang JF (2013) Peptide fibrils with altered stability, activity, and cell selectivity. Biomacromolecules 14(7):2326–2331CrossRefPubMedPubMedCentralGoogle Scholar
  48. Chen Y, Mant CT, Farmer SW, Hancock REW, Michael L, Vasil ML, Hodges RS (2005) Rational design of alpha-helical antimicrobial peptides with enhanced activities and specificity/therapeutic index. J Biol Chem 280:12316–12329CrossRefPubMedPubMedCentralGoogle Scholar
  49. Chen Y, Vasil AI, Rehaume L, Mant CT, Burns JL, Vasil ML, Hancock RE, Hodges RS (2006) Comparison of biophysical and biologic properties of α-helical enantiomeric antimicrobial peptides. Chem Biol Drug Des 67(2):162–173CrossRefPubMedPubMedCentralGoogle Scholar
  50. Chen Y, Guarnieri MT, Vasil AI, Vasil ML, Mant CT, Hodges RS (2007) Role of peptide hydrophobicity in the mechanism of action of α-helical antimicrobial peptides. Antimicrob Agents Chemother 51(4):1398–1406CrossRefPubMedGoogle Scholar
  51. Chen C, Pan F, Zhang S, Hu J, Cao M, Wang J, Xu H, Zhao X, Lu JR (2010) Antibacterial activities of short designer peptides: a link between propensity for nanostructuring and capacity for membrane destabilization. Biomacromolecules 11(2):402–411CrossRefPubMedGoogle Scholar
  52. Chen C, Hu J, Zeng P, Pan F, Yaseen M, Xu H, Lu JR (2014) Molecular mechanisms of anticancer action and cell selectivity of short α-helical peptides. Biomaterials 35(5):1552–1561CrossRefPubMedGoogle Scholar
  53. Chen H, Liu C, Chen D, Madrid K, Peng S, Dong X, Zhang M, Gu Y (2015) Bacteria-targeting conjugates based on antimicrobial peptide for bacteria diagnosis and therapy. Mol Pharm 12(7):2505–2516CrossRefPubMedGoogle Scholar
  54. Cherry MA, Higgins SK, Melroy H, Lee HS, Pokorny A (2014) Peptides with the same composition, hydrophobicity, and hydrophobic moment bind to phospholipid bilayers with different affinities. J Phys Chem B 118(43):12462–12470CrossRefPubMedPubMedCentralGoogle Scholar
  55. Chu-Kung AF, Bozzelli KN, Lockwood NA, Haseman JR, Mayo KH, Tirrell MV (2004) Promotion of peptide antimicrobial activity by fatty acid conjugation. Bioconjug Chem 15(3):530–535CrossRefPubMedGoogle Scholar
  56. Chu-Kung AF, Nguyen R, Bozzelli KN, Tirrell M (2010) Chain length dependence of antimicrobial peptide-fatty acid conjugate activity. J Colloid Interface Sci 345(2):160–167CrossRefPubMedGoogle Scholar
  57. Cornut I, Büttner K, Dasseux JL, Dufourcq J (1994) The amphipathic α-helix concept: application to the de novo design of ideally amphipathic Leu, Lys peptides with hemolytic activity higher than that of melittin. FEBS Lett 349(1):29–33CrossRefPubMedGoogle Scholar
  58. Dalzini A, Bergamini C, Biondi B, De Zotti M, Panighel G, Fato R, Peggion C, Bortolus M, Maniero AL (2016) The rational search for selective anticancer derivatives of the peptide trichogin GA IV: a multi-technique biophysical approach. Sci Rep 6:24000CrossRefPubMedPubMedCentralGoogle Scholar
  59. Daschbach MM, Negin S, You L, Walsh M, Gokel GW (2012) Aggregation and supramolecular membrane interactions that influence anion transport in tryptophan-containing synthetic peptides. Chem Eur J 18(24):7608–7623CrossRefPubMedGoogle Scholar
  60. Dathe M, Wieprecht T (1999) Structural features of helical antimicrobial peptides: their potential to modulate activity on model membranes and biological cells. Biochim Biophys Acta 1462(1):71–87CrossRefPubMedGoogle Scholar
  61. Dathe M, Schümann M, Wieprecht T, Winkler A, Beyermann M, Krause E, Matsuzatki K, Murase O, Bienert M (1996) Peptide helicity and membrane surface charge modulate the balance of electrostatic and hydrophobic interactions with lipid bilayers and biological membranes. Biochemistry 35(38):12612–12622CrossRefPubMedGoogle Scholar
  62. Dathe M, Wieprecht T, Nikolenko H, Handel L, Maloy WL, MacDonald DL, Beyermann M, Bienert M (1997) Hydrophobicity, hydrophobic moment and angle subtended by charged residues modulate antibacterial and haemolytic activity of amphipathic helical peptides. FEBS Lett 403(2):208–212CrossRefPubMedGoogle Scholar
  63. Dathe M, Nikolenko H, Meyer J, Beyermann M, Bienert M (2001) Optimization of the antimicrobial activity of magainin peptides by modification of charge. FEBS Lett 501(2–3):146–150CrossRefPubMedGoogle Scholar
  64. Dathe M, Meyer J, Beyermann M, Maul B, Hoischen C, Bienert M (2002) General aspects of peptide selectivity towards lipid bilayers and cell membranes studied by variation of the structural parameters of amphipathic helical model peptides. Biochim Biophys Acta 1558(2):171–186CrossRefPubMedGoogle Scholar
  65. Dawson RM, Liu CQ (2011) Analogues of peptide SMAP-29 with comparable antimicrobial potency and reduced toxicity. Int J Antimicrob Agents 37(5):432–437CrossRefPubMedGoogle Scholar
  66. Dawson RM, Fox MA, Atkins HS, Liu CQ (2011) Potent antimicrobial peptides with selectivity for Bacillus anthracis over human erythrocytes. Int J Antimicrob Agents 38(3):237–242CrossRefPubMedGoogle Scholar
  67. de Kruijff B (1990) Cholesterol as a target for toxins. Biosci Rep 10(2):127–130CrossRefPubMedGoogle Scholar
  68. de la Fuente-Núñez C, Reffuveille F, Mansour SC, Reckseidler-Zenteno SL, Hernández D, Brackman G, Coenye T, Hancock REW (2015) D-enantiomeric peptides that eradicate wild-type and multidrug-resistant biofilms and protect against lethal Pseudomonas aeruginosa infections. Chem Biol 22(2):196–205CrossRefPubMedPubMedCentralGoogle Scholar
  69. de Murphy CA, Gemmel F, Balter J (2010) Clinical trial of specific imaging of infections. Nucl Med Commun 31(8):726–733CrossRefGoogle Scholar
  70. Dean SN, Bishop BM, Van Hoek ML (2011) Susceptibility of Pseudomonas aeruginosa biofilm to alpha-helical peptides: D-enantiomer of LL-37. Front Microbiol 2:128CrossRefPubMedPubMedCentralGoogle Scholar
  71. DeGrado WF, Kezdy FJ, Kaiser ET (1981) Design, synthesis, and characterization of a cytotoxic peptide with melittin-like activity. J Am Chem Soc 103(3):679–681CrossRefGoogle Scholar
  72. Dempsey CE, Ueno S, Avison MB (2003) Enhanced membrane permeabilization and antibacterial activity of a disulfide-dimerized magainin analogue. Biochemistry 42(2):402–409CrossRefPubMedGoogle Scholar
  73. Dennison SR, Harris F, Bhatt T, Singh J, Phoenix DA (2009) The effect of C-terminal amidation on the efficacy and selectivity of antimicrobial and anticancer peptides. Mol Cell Biochem 332(1–2):43–50CrossRefPubMedGoogle Scholar
  74. Deslouches B, Hasek ML, Craigo JK, Steckbeck JD, Montelar RC (2016) Comparative functional properties of engineered cationic antimicrobial peptides consisting exclusively of tryptophan and either lysine or arginine. J Med Microbiol 65(6):554–565CrossRefPubMedPubMedCentralGoogle Scholar
  75. Dodge JT, Phillips GB (1967) Composition of phospholipids and of phospholipid fatty acids and aldehydes in human red cells. J Lipid Res 8(6):667–675PubMedGoogle Scholar
  76. Dutta J, Baijnath S, Somboro AM, Nagiah S, Albericio F, de la Torre BG, Marjanovic-Painter B, Zeevaart JR, Sathekge M, Kruger HG, Chuturgoon A, Naicker T, Ebenhan T, Govender T (2017) Synthesis, in vitro evaluation, and 68Ga-radiolabeling of CDP1 toward PET/CT imaging of bacterial infection. Chem Biol Drug Des 90(4):572–579CrossRefPubMedGoogle Scholar
  77. Ebenhan T, Gheysens O, Kruger HG, Zeevaart JR, Sathekge MM (2014a) Antimicrobial peptides: their role as infection-selective tracers for molecular imaging. Biomed Res Int. CrossRefGoogle Scholar
  78. Ebenhan T, Chadwick N, Sathekge MM, Govender P, Govender T, Kruger HG, Marjanovic-Painter B, Zeevaart JR (2014b) Peptide synthesis, characterization and 68Ga-radiolabeling of NOTA-conjugated ubiquicidin fragments for prospective infection imaging with PET/CT. Nucl Med Biol 41(5):390–400CrossRefPubMedGoogle Scholar
  79. Ebenhan T, Sathekge M, Lenagana T, Koole M, Gheysens O, Govender T, Zeevaart JR (2018) 68Ga-NOTA-functionalized ubiquicidin: cytotoxicity, biodistribution, radiation dosimetry and first-in-human positron emission tomography/computed tomography imaging of infections. J Nucl Med 59(2):334–339CrossRefPubMedGoogle Scholar
  80. Eckert R (2011) Road to clinical efficacy: challenges and novel strategies for antimicrobial peptide development. Future Microbiol 6(6):635–651CrossRefPubMedGoogle Scholar
  81. Eisenberg D, Weiss RM, Terwilliger TC (1982) The helical hydrophobic moment: a measure of the amphiphilicity of a helix. Nature 299(5881):371–374CrossRefPubMedGoogle Scholar
  82. Epand RF, Schmitt MA, Gellman SH, Epand RM (2006) Role of membrane lipids in the mechanism of bacterial species selective toxicity by two α/β-antimicrobial peptides. Biochim Biophys Acta 1758(9):1343–1350CrossRefPubMedGoogle Scholar
  83. Farrotti A, Bocchinfuso G, Palleschi A, Rosato N, Salnikov ES, Voievoda N, Bechinger B, Stella L (2015) Molecular dynamics methods to predict peptide locations in membranes: LAH4 as a stringent test case. Biochim Biophys Acta 1848(2):581–592CrossRefPubMedGoogle Scholar
  84. Farrotti A, Conflitti P, Srivastava S, Ghosh JK, Palleschi A, Stella L, Bocchinfuso G (2017) Molecular dynamics simulations of the host defense peptide temporin L and its Q3K derivative: an atomic level view from aggregation in water to bilayer perturbation. Molecules 22(7):1235CrossRefPubMedCentralGoogle Scholar
  85. Feder R, Dagan A, Mor A (2000) Structure-activity relationship study of antimicrobial dermaseptin S4 showing the consequences of peptide oligomerization on selective cytotoxicity. J Biol Chem 275(6):4230–4238CrossRefPubMedGoogle Scholar
  86. Feder R, Nehushtai R, Mor A (2001) Affinity driven molecular transfer from erythrocyte membrane to target cells. Peptides 22(10):1683–1690CrossRefPubMedGoogle Scholar
  87. Fernández-Vidal M, Jayasinghe S, Ladokhin AS, White SH (2007) Folding amphipathic helices into membranes: amphiphilicity trumps hydrophobicity. J Mol Biol 370(3):459–470CrossRefPubMedPubMedCentralGoogle Scholar
  88. Ferro-Flores G, de Murphy CA, Pedraza-López M, Meléndez-Alafort L, Zhang YM, Rusckowski M, Hnatowich DJ (2003) In vitro and in vivo assessment of 99mTc-UBI specificity for bacteria. Nucl Med Biol 30(6):597–603CrossRefPubMedGoogle Scholar
  89. Findlay EG, Currie SM, Davidson DJ (2013) Cationic host defence peptides: potential as antiviral therapeutics. BioDrugs 27(5):479–493CrossRefGoogle Scholar
  90. Friedrich CL, Moyles D, Beveridge TJ, Hancock RE (2000) Antibacterial action of structurally diverse cationic peptides on gram-positive bacteria. Antimicrob Agents Chemother 44(8):2086–2092CrossRefPubMedPubMedCentralGoogle Scholar
  91. Gaillard P, Carrupt PA, Testa B, Boudon A (1994) Molecular lipophilicity potential, a tool in 3D QSAR: method and applications. J Comput Aided Mol Des 8(2):83–96CrossRefPubMedGoogle Scholar
  92. Gandomkar M, Najafi R, Shafiei M, Mazidi M, Goudarzi M, Mirfallah SH, Ebrahimi F, Heydarpor HR, Abdie N (2009) Clinical evaluation of antimicrobial peptide [99mTc/Tricine/HYNIC0] ubiquicidin 29–41 as a human-specific infection imaging agent. Nucl Med Biol 36(2):199–205CrossRefPubMedGoogle Scholar
  93. Gascard P, Tran D, Sauvage M, Sulpice JC, Fukami K, Takenawa T, Claret M, Giraud F (1991) Asymmetric distribution of phosphoinositides and phosphatidic acid in the human erythrocyte membrane. Biochim Biophys Acta 1069(1):27–36CrossRefPubMedGoogle Scholar
  94. Gaspar D, Veiga AS, Castanho MA (2013) From antimicrobial to anticancer peptides. A review. Front Microbiol 4:294CrossRefPubMedPubMedCentralGoogle Scholar
  95. Gatto E, Mazzuca C, Stella L, Venanzi M, Toniolo C, Pispisa B (2006) Effect of peptide lipidation on membrane perturbing activity: a comparative study on two trichogin analogues. J Phys Chem B 110(45):22813–22818CrossRefPubMedGoogle Scholar
  96. Gazit E, Boman A, Boman HG, Shai Y (1995) Interaction of the mammalian antibacterial peptide cecropin P1 with phospholipid vesicles. Biochemistry 34(36):11479–11488CrossRefPubMedGoogle Scholar
  97. Gelhaus C, Jacobs T, Andrä J, Leippe M (2008) The antimicrobial peptide NK-2, the core region of mammalian NK-lysin, kills intraerythrocytic Plasmodium falciparum. Antimicrob Agents Chemother 52(5):1713–1720CrossRefPubMedPubMedCentralGoogle Scholar
  98. Ghosh JK, Shaool D, Guillaud P, Cicéron L, Mazier D, Kustanovich I, Shai Y, Mor A (1997) Selective cytotoxicity of dermaseptin S3 toward intraerythrocytic plasmodium falciparum and the underlying molecular basis. J Biol Chem 272(50):31609–31616CrossRefPubMedGoogle Scholar
  99. Giacometti A, Cirioni O, Greganti G, Quarta M, Scalise G (1998) In vitro activities of membrane-active peptides against gram-positive and gram-negative aerobic bacteria. Antimicrob Agents Chemother 42(12):3320–3324CrossRefPubMedPubMedCentralGoogle Scholar
  100. Giangaspero A, Sandri L, Tossi A (2001) Amphipathic α helical antimicrobial peptides. A systematic study of the effects of structural and physical properties on biological activity. Eur J Biochem 268(21):5589–5600CrossRefPubMedGoogle Scholar
  101. Glukhov E, Burrows LL, Deber CM (2008) Membrane interactions of designed cationic antimicrobial peptides: the two thresholds. Biopolymers 89(5):360–371CrossRefPubMedGoogle Scholar
  102. Golbek TW, Franz J, Elliott Fowler J, Schilke KF, Weidner T, Baio JE (2017) Identifying the selectivity of antimicrobial peptides to cell membranes by sum frequency generation spectroscopy. Biointerphases 12(2):02D406CrossRefPubMedGoogle Scholar
  103. Gonçalves S, Abade J, Teixeira A, Santos NC (2012) Lipid composition is a determinant for human defensin HNP1 selectivity. Biopolymers 98(4):313–321CrossRefPubMedGoogle Scholar
  104. Gordesky SE, Marinetti GV (1973) The asymmetric arrangement of phospholipids in the human erythrocyte membrane. Biochem Biophys Res Commun 50(4):1027–1031CrossRefPubMedGoogle Scholar
  105. Gordesky SE, Marinetti GV, Love R (1975) The reaction of chemical probes with the erythrocyte membrane. J Membr Biol 20(1–2):111–132CrossRefPubMedGoogle Scholar
  106. Hallock KJ, Lee DK, Omnaas J, Mosberg HI, Ramamoorthy A (2002) Membrane composition determines pardaxin’s mechanism of lipid bilayer disruption. Biophys J 83(2):1004–1013CrossRefPubMedPubMedCentralGoogle Scholar
  107. Hancock RE, Sahl HG (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24(12):1551CrossRefPubMedGoogle Scholar
  108. Haney EF, Wu BC, Lee K, Hilchie AL, Hancock RE (2017) Aggregation and its influence on the immunomodulatory activity of synthetic innate defense regulator peptides. Cell Chem Biol 24(8):969–980CrossRefPubMedGoogle Scholar
  109. Harris F, Dennison SR, Singh J, Phoenix DA (2013) On the selectivity and efficacy of defense peptides with respect to cancer cells. Med Res Rev 33(1):190–234CrossRefPubMedGoogle Scholar
  110. Hartmann M, Berditsch M, Hawecker J, Ardakani MF, Gerthsen D, Ulrich AS (2010) Damage of the bacterial cell envelope by antimicrobial peptides gramicidin S and PGLa as revealed by transmission and scanning electron microscopy. Antimicrob Agents Chemother 54(8):3132–3142CrossRefPubMedPubMedCentralGoogle Scholar
  111. Hawrani A, Howe RA, Walsh TR, Dempsey CE (2008) Origin of low mammalian cell toxicity in a class of highly active antimicrobial amphipathic helical peptides. J Biol Chem 283(27):18636–18645CrossRefPubMedGoogle Scholar
  112. Hayami M, Okabe A, Kariyama R, Abe M, Kanemasa Y (1979) Lipid composition of Staphylococcus aureus and its derived L-forms. Microbiol Immunol 23(6):435–442CrossRefPubMedGoogle Scholar
  113. He J, Krauson AJ, Wimley WC (2014) Toward the de novo design of antimicrobial peptides: lack of correlation between peptide permeabilization of lipid vesicles and antimicrobial, cytolytic, or cytotoxic activity in living cells. Biopolymers 102(1):1–6CrossRefPubMedPubMedCentralGoogle Scholar
  114. Henriksen J, Rowat AC, Brief E, Hsueh YW, Thewalt JL, Zuckermann MJ, Ipsen JH (2006) Universal behavior of membranes with sterols. Biophys J 90(5):1639–1649CrossRefPubMedGoogle Scholar
  115. Henriksen JR, Etzerodt T, Gjetting T, Andresen TL (2014) Side chain hydrophobicity modulates therapeutic activity and membrane selectivity of antimicrobial peptide mastoparan-X. PLoS One 9:e91007CrossRefPubMedPubMedCentralGoogle Scholar
  116. Hollmann A, Martinez M, Maturana P, Semorile LC, Maffia PC (2018) Antimicrobial peptides: interaction with model and biological membranes and synergism with chemical antibiotics. Front Chem 6:204CrossRefPubMedPubMedCentralGoogle Scholar
  117. Holt A, de Almeida RF, Nyholm TK, Loura LM, Daily AE, Staffhorst RW, Rijkers DTS, Koeppe RE II, Prieto M, Killian JA (2008) Is there a preferential interaction between cholesterol and tryptophan residues in membrane proteins? Biochemistry 47(8):2638–2649CrossRefPubMedPubMedCentralGoogle Scholar
  118. Hong SY, Oh JE, Lee KH (1999) Effect of D-amino acid substitution on the stability, the secondary structure, and the activity of membrane-active peptide. Biochem Pharmacol 58(11):1775–1780CrossRefPubMedGoogle Scholar
  119. Hoskin DW, Ramamoorthy A (2008) Studies on anticancer activities of antimicrobial peptides. Biochim Biophys Acta 1778(2):357–375CrossRefPubMedPubMedCentralGoogle Scholar
  120. Hoyos-Nogués M, Gil FJ, Mas-Moruno C (2018) Antimicrobial peptides: powerful biorecognition elements to detect bacteria in biosensing technologies. Molecules 23(7):1683CrossRefPubMedCentralGoogle Scholar
  121. Huang Y, Huang J, Chen Y (2010) Alpha-helical cationic antimicrobial peptides: relationships of structure and function. Protein Cell 1(2):143–152CrossRefPubMedPubMedCentralGoogle Scholar
  122. Huang Y, He L, Li G, Zhai N, Jiang H, Chen Y (2014) Role of helicity of α-helical antimicrobial peptides to improve specificity. Protein Cell 5(8):631–642CrossRefPubMedPubMedCentralGoogle Scholar
  123. Jacobs T, Bruhn H, Gaworski I, Fleischer B, Leippe M (2003) NK-lysin and its shortened analog NK-2 exhibit potent activities against Trypanosoma cruzi. Antimicrob Agents Chemother 47(2):607–613CrossRefPubMedPubMedCentralGoogle Scholar
  124. Javadpour MM, Juban MM, Lo WCJ, Bishop SM, Alberty BJ, Cowell SM, Becker CL, McLaughlin ML (1996) De novo antimicrobial peptides with low mammalian cell toxicity. J Med Chem 39:3107–3113CrossRefPubMedGoogle Scholar
  125. Jepson AK, Schwarz-Linek J, Ryan L, Ryadnov MG, Poon WC (2016) What is the ‘Minimum Inhibitory Concentration’ (MIC) of Pexiganan acting on Escherichia coli?-A cautionary case study. In: Leake MC (ed) Biophysics of infection. Springer, Cham, pp 33–48Google Scholar
  126. Jiang Z, Vasil AI, Hale JD, Hancock RE, Vasil ML, Hodges RS (2008) Effects of net charge and the number of positively charged residues on the biological activity of amphipathic α-helical cationic antimicrobial peptides. Biopolymers 90(3):369–383CrossRefPubMedPubMedCentralGoogle Scholar
  127. Jiang Z, Vasil AI, Gera L, Vasil M, Hodges RS (2011) Rational design of a-helical antimicrobial peptides to target Gram-negative pathogens, Acinetobacter baumannii and Pseudomonas aeruginosa: utilization of charge, ‘specificity determinants,’ total hydrophobicity, hydrophobe type and location as design parameters to improve the therapeutic ratio. Chem Biol Drug Des 77(4):225–240CrossRefPubMedPubMedCentralGoogle Scholar
  128. Jiang Z, Vasil AI, Vasil ML, Hodges RS (2014) “Specificity Determinants” improve therapeutic indices of two antimicrobial peptides piscidin 1 and dermaseptin s4 against the Gram-negative pathogens Acinetobacter baumannii and Pseudomonas aeruginosa. Pharmaceuticals 7(4):366–391CrossRefPubMedPubMedCentralGoogle Scholar
  129. Jiang Z, Mant CT, Vasil M, Hodges RS (2018) Role of positively charged residues on the polar and non- polar faces of amphipathic α- helical antimicrobial peptides on specificity and selectivity for Gram-negative pathogens. Chem Biol Drug Des 91(1):75–92CrossRefPubMedGoogle Scholar
  130. Jones EM, Smart A, Bloomberg G, Burgess L, Millar MR (1994) Lactoferricin, a new antimicrobial peptide. J Appl Bacteriol 77(2):208–214CrossRefPubMedGoogle Scholar
  131. Joshi S, Dewangan RP, Yar MS, Rawat DS, Pasha S (2015) N-terminal aromatic tag induced self assembly of tryptophan–arginine rich ultra short sequences and their potent antibacterial activity. RSC Adv 5(84):68610–68620CrossRefGoogle Scholar
  132. Juretic D, Vukicevic D, Ilic N, Antcheva N, Tossi A (2009) Computational design of highly selective antimicrobial peptides. J Chem Inf Model 49(12):2873–2882CrossRefPubMedGoogle Scholar
  133. Juvvadi P, Vunnam S, Merrifield RB (1996) Synthetic melittin, its enantio, retro, and retroenantio isomers, and selected chimeric analogs: their antibacterial, hemolytic, and lipid bilayer action. J Am Chem Soc 118(38):8989–8997CrossRefGoogle Scholar
  134. Kahrom M, Bahar MM, Jangjoo A, Erfani M, Sadeghi R, Zakavi SR (2014) Poor sensitivity of 99mTc-labeled ubiquicidin scintigraphy in diagnosis of acute appendicitis. Eur Surg 46(4):173–176CrossRefGoogle Scholar
  135. Kamech N, Vukičević D, Ladram A, Piesse C, Vasseur J, Bojović V, Simunić J, Juretić D (2012) Improving the selectivity of antimicrobial peptides from anuran skin. J Chem Inf Model 52(12):3341–3351CrossRefPubMedGoogle Scholar
  136. Kaminski HM, Feix JB (2011) Effects of D-lysine substitutions on the activity and selectivity of antimicrobial peptide CM15. Polymers 3(4):2088–2106CrossRefPubMedPubMedCentralGoogle Scholar
  137. Kang JH, Shin SY, Jang SY, Kim KL, Hahm KS (1999) Effects of tryptophan residues of porcine myeloid antibacterial peptide PMAP-23 on antibiotic activity. Biochem Biophys Res Commun 264(1):281–286CrossRefPubMedGoogle Scholar
  138. Khandelia H, Kaznessis YN (2006) Molecular dynamics investigation of the influence of anionic and zwitterionic interfaces on antimicrobial peptides’ structure: implications for peptide toxicity and activity. Peptides 27(6):1192–1200CrossRefPubMedGoogle Scholar
  139. Kim S, Kim SS, Lee BJ (2005) Correlation between the activities of α-helical antimicrobial peptides and hydrophobicities represented as RP HPLC retention times. Peptides 26(11):2050–2056CrossRefPubMedGoogle Scholar
  140. Kim JK, Lee SA, Shin S, Lee JY, Jeong KW, Nan YH, Park YS, Shin SY, Kim Y (2010) Structural flexibility and the positive charges are the key factors in bacterial cell selectivity and membrane penetration of peptoid-substituted analog of Piscidin 1. Biochim Biophys Acta 1798(10):1913–1925CrossRefPubMedGoogle Scholar
  141. Kindrachuk J, Napper S (2010) Structure-activity relationships of multifunctional host defence peptides. Mini-Rev Med Chem 10(7):596–614CrossRefPubMedGoogle Scholar
  142. Koller D, Lohner K (2014) The role of spontaneous lipid curvature in the interaction of interfacially active peptides with membranes. Biochim Biophys Acta 1838(9):2250–2259CrossRefPubMedGoogle Scholar
  143. Konai MM, Samaddar S, Bocchinfuso G, Santucci V, Stella L, Haldar J (2018) Selectively targeting bacteria by tuning the molecular design of membrane-active peptidomimetic amphiphiles. Chem Commun 54(39):4943–4946CrossRefGoogle Scholar
  144. Kondejewski LH, Jelokhani-Niaraki M, Farmer SW, Lix B, Kay CM, Sykes BD, Hancock RE, Hodges RS (1999) Dissociation of antimicrobial and hemolytic activities in cyclic peptide diastereomers by systematic alterations in amphipathicity. J Biol Chem 274(19):13181–13192CrossRefPubMedGoogle Scholar
  145. Kondejewski LH, Lee DL, Jelokhani-Niaraki M, Farmer SW, Hancock REW, Hodges RS (2002) Optimization of microbial specificity in cyclic peptides by modulation of hydrophobicity within a defined structural framework. J Biol Chem 277(1):67–74CrossRefPubMedGoogle Scholar
  146. Krause E, Beyermann M, Dathe M, Rothemund S, Bienert M (1995) Location of an amphipathic. alpha-Helix in peptides using reversed-phase HPLC retention behavior of D-amino acid analogs. Anal Chem 67(2):252–258CrossRefPubMedGoogle Scholar
  147. Krugliak M, Feder R, Zolotarev VY, Gaidukov L, Dagan A, Ginsburg H, Mor A (2000) Antimalarial activities of dermaseptin S4 derivatives. Antimicrob Agents Chemother 44(9):2442–2451CrossRefPubMedPubMedCentralGoogle Scholar
  148. Kustanovich I, Shalev DE, Mikhlin M, Gaidukov L, Mor A (2002) Structural requirements for potent versus selective cytotoxicity for antimicrobial dermaseptin S4 derivatives. J Biol Chem 277(19):16941–16951CrossRefPubMedGoogle Scholar
  149. Ladokhin AS, White SH (2001) Protein chemistry at membrane interfaces: non-additivity of electrostatic and hydrophobic interactions. J Mol Biol 309(3):543–552CrossRefPubMedGoogle Scholar
  150. Laverty G, McLaughlin M, Shaw C, Gorman SP, Gilmore BF (2010) Antimicrobial activity of short, synthetic cationic lipopeptides. Chem Biol Drug Des 75(6):563–569CrossRefPubMedGoogle Scholar
  151. Le Joncour V, Laakkonen P (2018) Seek & destroy, use of targeting peptides for cancer detection and drug delivery. Bioorg Med Chem 26(10):2797–2806CrossRefPubMedGoogle Scholar
  152. Lee K, Shin SY, Kim K, Lim SS, Hahm KS, Kim Y (2004) Antibiotic activity and structural analysis of the scorpion-derived antimicrobial peptide IsCT and its analogs. Biochem Biophys Res Commun 323(2):712–719CrossRefPubMedGoogle Scholar
  153. Lee MT, Hung WC, Chen FY, Huang HW (2005) Many-body effect of antimicrobial peptides: on the correlation between lipid’s spontaneous curvature and pore formation. Biophys J 89(6):4006–4016CrossRefPubMedPubMedCentralGoogle Scholar
  154. Lee SA, Kim YK, Lim SS, Zhu WL, Ko H, Shin SY, Hahm KS, Kim Y (2007) Solution structure and cell selectivity of piscidin 1 and its analogues. Biochemistry 46(12):3653–3663CrossRefPubMedGoogle Scholar
  155. Lei R, Hou J, Chen Q, Yuan W, Cheng B, Sun Y, Jin Y, Ge L, Ben-Sasson SA, Chen J, Wang H, Lu W, Fang X (2018) Self-assembling myristoylated human α-defensin 5 as a next-generation nanobiotics potentiates therapeutic efficacy in bacterial infection. ACS Nano 12(6):5284–5296CrossRefGoogle Scholar
  156. Leite NB, Aufderhorst-Roberts A, Palma MS, Connell SD, Neto JR, Beales PA (2015) PE and PS lipids synergistically enhance membrane poration by a peptide with anticancer properties. Biophys J 109(5):936–947CrossRefPubMedPubMedCentralGoogle Scholar
  157. Levison ME, Pitsakis PG, May PL, Johnson CC (1993) The bactericidal activity of magainins against Pseudomonas aeruginosa and Enterococcus faecium. J Antimicrob Chemother 32(4):577–585CrossRefPubMedGoogle Scholar
  158. Lewis RNAH, McElhaney RN (2005) The mesomorphic phase behavior of lipids. In: Yeagle PL (ed) The structure of biological membranes, 2nd edn. CRC Press, Boca Raton, pp 53–120Google Scholar
  159. Li P, Zhou C, Rayatpisheh S, Ye K, Poon YF, Hammond PT, Duan H, Chan-Park MB (2012) Cationic peptidopolysaccharides show excellent broad-spectrum antimicrobial activities and high selectivity. Adv Mater 24(30):4130–4137CrossRefPubMedGoogle Scholar
  160. Lin D, Grossfield A (2015) Thermodynamics of micelle formation and membrane fusion modulate antimicrobial lipopeptide activity. Biophys J 109(4):750–759CrossRefPubMedPubMedCentralGoogle Scholar
  161. Liu L, Xu K, Wang H, Tan PJ, Fan W, Venkatraman SS, Li L, Yang YY (2009) Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent. Nat Nanotechnol 4(7):457–463CrossRefPubMedGoogle Scholar
  162. Lorian V (2005) Antibiotics in laboratory medicine, 5th edn. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  163. Luo Y, McLean DT, Linden GJ, McAuley DF, McMullan R, Lundy FT (2017) The naturally occurring host defense peptide, LL-37, and its truncated mimetics KE-18 and KR-12 have selected biocidal and antibiofilm activities against Candida albicans, Staphylococcus aureus, and Escherichia coli in vitro. Front Microbiol 8:544PubMedPubMedCentralGoogle Scholar
  164. Lupetti A, Welling MM, Pauwels EK, Nibbering PH (2003) Radiolabelled antimicrobial peptides for infection detection. Lancet Infect Dis 3(4):223–229CrossRefPubMedGoogle Scholar
  165. Lupetti A, Van Dissel JT, Brouwer CP, Nibbering PH (2008) Human antimicrobial peptides’ antifungal activity against Aspergillus fumigatus. Eur J Clin Microbiol Infect Dis 27(11):1125–1129CrossRefPubMedGoogle Scholar
  166. Lyu Y, Yang Y, Lyu X, Dong N, Shan A (2016) Antimicrobial activity, improved cell selectivity and mode of action of short PMAP-36-derived peptides against bacteria and Candida. Sci Rep 6:27258CrossRefPubMedPubMedCentralGoogle Scholar
  167. Mahlapuu M, Håkansson J, Ringstad L, Björn C (2016) Antimicrobial peptides: an emerging category of therapeutic agents. Front Cell Infect Microbiol 6:194CrossRefPubMedPubMedCentralGoogle Scholar
  168. Makovitzki A, Avrahami D, Shai Y (2006) Ultrashort antibacterial and antifungal lipopeptides. Proc Natl Acad Sci U S A 103(43):15997–16002CrossRefPubMedPubMedCentralGoogle Scholar
  169. Makovitzki A, Baram J, Shai Y (2008) Antimicrobial lipopolypeptides composed of palmitoyl di-and tricationic peptides: in vitro and in vivo activities, self-assembly to nanostructures, and a plausible mode of action. Biochemistry 47(40):10630–10636CrossRefPubMedGoogle Scholar
  170. Malanovic N, Lohner K (2016) Antimicrobial peptides targeting gram-positive bacteria. Pharmaceuticals 9(3):59CrossRefPubMedCentralGoogle Scholar
  171. Malina A, Shai Y (2005) Conjugation of fatty acids with different lengths modulates the antibacterial and antifungal activity of a cationic biologically inactive peptide. Biochem J 390(3):695–702CrossRefPubMedPubMedCentralGoogle Scholar
  172. Mangoni ML, Shai Y (2009) Temporins and their synergism against Gram-negative bacteria and in lipopolysaccharide detoxification. Biochim Biophys Acta 1788(8):1610–1619CrossRefPubMedGoogle Scholar
  173. Mangoni ML, Carotenuto A, Auriemma L, Saviello MR, Campiglia P, Gomez-Monterrey I, Malfi S, Marcellini L, Barra D, Novellino E, Grieco P (2011) Structure-activity relationship, conformational and biological studies of Temporin L analogues. J Med Chem 54(5):1298–1307CrossRefPubMedGoogle Scholar
  174. Mannoor MS, Zhang S, Link AJ, McAlpine MC (2010) Electrical detection of pathogenic bacteria via immobilized antimicrobial peptides. Proc Natl Acad Sci U S A 107(45):19207–19212CrossRefPubMedPubMedCentralGoogle Scholar
  175. Marsh D (1990) CRC handbook of lipid bilayers. CRC Press, Boca RatonGoogle Scholar
  176. Matsuzaki K (2009) Control of cell selectivity of antimicrobial peptides. Biochim Biophys Acta 1788(8):1687–1692CrossRefPubMedGoogle Scholar
  177. Matsuzaki K, Harada M, Handa T, Funakoshi S, Fujii N, Yajima H, Miyajima K (1989) Magainin 1-induced leakage of entrapped calcein out of negatively-charged lipid vesicles. Biochim Biophys Acta 981(1):130–134CrossRefPubMedGoogle Scholar
  178. Matsuzaki K, Sugishita K, Fujii N, Miyajima K (1995) Molecular basis for membrane selectivity of an antimicrobial peptide, magainin 2. Biochemistry 34(10):3423–3429CrossRefPubMedGoogle Scholar
  179. Matsuzaki K, Sugishita KI, Harada M, Fujii N, Miyajima K (1997) Interactions of an antimicrobial peptide, magainin 2, with outer and inner membranes of Gram-negative bacteria. Biochim Biophys Acta 1327(1):119–130CrossRefPubMedGoogle Scholar
  180. Matsuzaki K, Sugishita KI, Ishibe N, Ueha M, Nakata S, Miyajima K, Epand RM (1998) Relationship of membrane curvature to the formation of pores by magainin 2. Biochemistry 37(34):11856–11863CrossRefPubMedGoogle Scholar
  181. Maturana P, Martinez M, Noguera ME, Santos NC, Disalvo EA, Semorile L, Maffia PC, Hollmann A (2017) Lipid selectivity in novel antimicrobial peptides: implication on antimicrobial and hemolytic activity. Colloids Surf B Biointerfaces 153:152–159CrossRefPubMedGoogle Scholar
  182. Mazzuca C, Stella L, Venanzi M, Formaggio F, Toniolo C, Pispisa B (2005) Mechanism of membrane activity of the antibiotic trichogin GA IV: a two-state transition controlled by peptide concentration. Biophys J 88(5):3411–3421CrossRefPubMedPubMedCentralGoogle Scholar
  183. McCloskey AP, Gilmore BF, Laverty G (2014) Evolution of antimicrobial peptides to self-assembled peptides for biomaterial applications. Pathogens 3(4):791–821CrossRefPubMedPubMedCentralGoogle Scholar
  184. McHenry AJ, Sciacca MF, Brender JR, Ramamoorthy A (2012) Does cholesterol suppress the antimicrobial peptide induced disruption of lipid raft containing membranes? Biochim Biophys Acta 1818(12):3019–3024CrossRefPubMedPubMedCentralGoogle Scholar
  185. McIntosh TJ, Vidal A, Simon SA (2002) The energetics of peptide-lipid interactions: modulation by interfacial dipoles and cholesterol. In: Peptide-lipid interactions, current topics in membranes, vol 52. Elsevier, Amsterdam, pp 309–338CrossRefGoogle Scholar
  186. McMahon HT, Boucrot E (2015) Membrane curvature at a glance. J Cell Sci 128(6):1065–1070CrossRefPubMedPubMedCentralGoogle Scholar
  187. Meléndez-Alafort L, Rodríguez-Cortés J, Ferro-Flores G, De Murphy CA, Herrera-Rodríguez R, Mitsoura E, Martínez-Duncker C (2004) Biokinetics of 99mTc-UBI 29-41 in humans. Nucl Med Biol 31(3):373–379CrossRefPubMedGoogle Scholar
  188. Melo MN, Ferre R, Castanho MA (2009) Antimicrobial peptides: linking partition, activity and high membrane-bound concentrations. Nat Rev Microbiol 7(3):245–250CrossRefPubMedGoogle Scholar
  189. Mendive-Tapia L, Zhao C, Akram AR, Preciado S, Albericio F, Lee M, Serrels A, Kielland N, Read ND, Lavilla R, Vendrell M (2016) Spacer-free BODIPY fluorogens in antimicrobial peptides for direct imaging of fungal infection in human tissue. Nat Commun 7:10940CrossRefPubMedPubMedCentralGoogle Scholar
  190. Miyazaki Y, Aoki M, Yano Y, Matsuzaki K (2012) Interaction of antimicrobial peptide magainin 2 with gangliosides as a target for human cell binding. Biochemistry 51(51):10229–10235CrossRefPubMedGoogle Scholar
  191. Mojsoska B, Zuckermann RN, Jenssen H (2015) Structure-activity relationship study of novel peptoids that mimic the structure of antimicrobial peptides. Antimicrob Agents Chemother 59(7):4112–4120CrossRefPubMedPubMedCentralGoogle Scholar
  192. Morein S, Andersson AS, Rilfors L, Lindblom G (1996) Wild-type Escherichia coli cells regulate the membrane lipid composition in a window between gel and non-lamellar structures. J Biol Chem 271(12):6801–6809CrossRefPubMedGoogle Scholar
  193. Mouritsen OG, Zuckermann MJ (2004) What’s so special about cholesterol? Lipids 39(11):1101–1113CrossRefPubMedGoogle Scholar
  194. Mura M, Wang J, Zhou Y, Pinna M, Zvelindovsky AV, Dennison SR, Phoenix DA (2016) The effect of amidation on the behaviour of antimicrobial peptides. Eur Biophys J 45(3):195–207CrossRefPubMedPubMedCentralGoogle Scholar
  195. Nan YH, Bang JK, Shin SY (2009) Design of novel indolicidin-derived antimicrobial peptides with enhanced cell specificity and potent anti-inflammatory activity. Peptides 30(5):832–838CrossRefPubMedGoogle Scholar
  196. Nan YH, Lee BJ, Shin SY (2012) Prokaryotic selectivity, anti-endotoxic activity and protease stability of diastereomeric and enantiomeric analogs of human antimicrobial peptide LL-37. Bull Kor Chem Soc 33(9):2883–2889CrossRefGoogle Scholar
  197. Nicolas P (2009) Multifunctional host defense peptides: intracellular-targeting antimicrobial peptides. FEBS J 276(22):6483–6496CrossRefPubMedGoogle Scholar
  198. Nishi H, Komatsuzawa H, Fujiwara T, McCallum N, Sugai M (2004) Reduced content of lysyl-phosphatidylglycerol in the cytoplasmic membrane affects susceptibility to moenomycin, as well as vancomycin, gentamicin, and antimicrobial peptides, in Staphylococcus aureus. Antimicrob Agents Chemother 48(12):4800–4807CrossRefPubMedPubMedCentralGoogle Scholar
  199. Noore J, Noore A, Li B (2012) Cationic antimicrobial peptide LL-37 is effective against both extra-and intra-cellular staphylococcus aureus. Antimicrob Agents Chemother 57(3):1283–1290CrossRefPubMedGoogle Scholar
  200. Oddo A, Hansen PR (2017) Hemolytic activity of antimicrobial peptides. In: Hansen PR (ed) Antimicrobial peptides: methods and protocols. Methods in molecular biology, vol 1548. Humana Press, New York, pp 427–435CrossRefGoogle Scholar
  201. Oh H, Hedberg M, Wade D, Edlund C (2000) Activities of synthetic hybrid peptides against anaerobic bacteria: aspects of methodology and stability. Antimicrob Agents Chemother 44(1):68–72CrossRefPubMedPubMedCentralGoogle Scholar
  202. Oliver PM, Crooks JA, Leidl M, Yoon EJ, Saghatelian A, Weibel DB (2014) Localization of anionic phospholipids in Escherichia coli cells. J Bacteriol 196(19):3386–3398CrossRefPubMedPubMedCentralGoogle Scholar
  203. Op den Kamp JAF, Redai I, van Deenen LLM (1969) Phospholipid composition of Bacillus subtilis. J Bacteriol 99(1):298–303Google Scholar
  204. Oren Z, Shai Y (1997) Selective lysis of bacteria but not mammalian cells by diastereomers of melittin: structure-function study. Biochemistry 36(7):1826–1835CrossRefPubMedGoogle Scholar
  205. Oren Z, Shai Y (2000) Cyclization of a cytolytic amphipathic α-helical peptide and its diastereomer: effect on structure, interaction with model membranes, and biological function. Biochemistry 39(20):6103–6114CrossRefPubMedGoogle Scholar
  206. Oren Z, Lerman JC, Gudmundsson GH, Agerberth B, Shai Y (1999) Structure and organization of the human antimicrobial peptide LL-37 in phospholipid membranes: relevance to the molecular basis for its non-cell-selective activity. Biochem J 341(3):501–513CrossRefPubMedPubMedCentralGoogle Scholar
  207. Orioni B, Bocchinfuso G, Kim JY, Palleschi A, Grande G, Bobone S, Park Y, Kim JI, Hahm KS, Stella L (2009) Membrane perturbation by the antimicrobial peptide PMAP-23: a fluorescence and molecular dynamics study. Biochim Biophys Acta 1788(7):1523–1533CrossRefPubMedGoogle Scholar
  208. Osborn MJ, Gander JE, Parisi E, Carson J (1972) Mechanism of assembly of the outer membrane of Salmonella typhimurium isolation and characterization of cytoplasmic and outer membrane. J Biol Chem 247(12):3962–3972PubMedGoogle Scholar
  209. Ostovar A, Assadi M, Vahdat K, Nabipour I, Javadi H, Eftekhari M, Assadi M (2013) A pooled analysis of diagnostic value of 99mTc-ubiquicidin (UBI) scintigraphy in detection of an infectious process. Clin Nucl Med 38(6):413–416CrossRefPubMedGoogle Scholar
  210. Otvos L (2017) Racing on the wrong track. Front Chem 5:42CrossRefPubMedPubMedCentralGoogle Scholar
  211. Otvos L Jr, Bokonyi K, Varga I, Otvos BI, Hoffmann R, Ertl HC, Wade JD, McManus AM, Craik DJ, Bulet P (2000) Insect peptides with improved protease-resistance protect mice against bacterial infection. Protein Sci 9(4):742–749CrossRefPubMedPubMedCentralGoogle Scholar
  212. Pachón-Ibáñez ME, Smani Y, Pachón J, Sánchez-Céspedes J (2017) Perspectives for clinical use of engineered human host defense antimicrobial peptides. FEMS Microbiol Rev 41(3):323–342CrossRefPubMedPubMedCentralGoogle Scholar
  213. Pandey BK, Ahmad A, Asthana N, Azmi S, Srivastava RM, Srivastava S, Verma R, Vishwakarma AL, Ghosh JK (2010) Cell-selective lysis by novel analogues of melittin against human red blood cells and Escherichia coli. Biochemistry 49(36):7920–7929CrossRefPubMedGoogle Scholar
  214. Pandey BK, Srivastava S, Singh M, Ghosh JK (2011) Inducing toxicity by introducing a leucine-zipper-like motif in frog antimicrobial peptide, magainin 2. Biochem J 436(3):609–620CrossRefPubMedGoogle Scholar
  215. Panteleev P, Bolosov IA, Balandin SV, Ovchinnikova TV (2015) Design of antimicrobial peptide arecinin analogs with improved therapeutic indices. J Pept Sci 21(2):105–113CrossRefPubMedGoogle Scholar
  216. Papo N, Oren Z, Pag U, Sahl HG, Shai Y (2002) The consequence of sequence alteration of an amphipathic α-helical antimicrobial peptide and its diastereomers. J Biol Chem 277(37):33913–33921CrossRefPubMedGoogle Scholar
  217. Park Y, Lee DG, Jang SH, Woo EH, Jeong HG, Choi CH, Hahm KS (2003) A Leu-Lys-rich antimicrobial peptide: activity and mechanism. Biochim Biophys Acta 1645(2):172–182CrossRefPubMedGoogle Scholar
  218. Pasupuleti M, Schmidtchen A, Chalupka A, Ringstad L, Malmsten M (2009) End-tagging of ultra-short antimicrobial peptides by W/F stretches to facilitate bacterial killing. PLoS One 4(4):e5285CrossRefPubMedPubMedCentralGoogle Scholar
  219. Patel JB, Cockerill FR, Bradford PA, Eliopulos GM, Hindler JA, Jenkins SG, Lewis II JS, Limbago B, Miller LA, Nicolau DP, Powell DP, Swenson JM, Traczewski MM, Turnidge JD, Weistein MP, Zimmer BL (2012) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, approved standard, 10th edn. Clinical and Laboratory Standards Institute CLSI document M07-A10Google Scholar
  220. Perron GG, Zasloff M, Bell G (2006) Experimental evolution of resistance to an antimicrobial peptide. Proc Biol Sci 273(1583):251–256CrossRefPubMedGoogle Scholar
  221. Phadke SM, Islam K, Deslouches B, Kapoor SA, Stolz DB, Watkins SC, Montelaro RC, Pilewski JM, Mietzner TA (2003) Selective toxicity of engineered lentivirus lytic peptides in a CF airway cell model. Peptides 24(8):1099–1107CrossRefPubMedGoogle Scholar
  222. Phoenix DA, Harris F (2002) The hydrophobic moment and its use in the classification of amphiphilic structures. Mol Membr Biol 19(1):1–10CrossRefPubMedGoogle Scholar
  223. Phoenix DA, Dennison SR, Harris F (eds) (2012) Antimicrobial peptides. Wiley, New YorkGoogle Scholar
  224. Phoenix DA, Harris F, Mura M, Dennison SR (2015) The increasing role of phosphatidylethanolamine as a lipid receptor in the action of host defence peptides. Prog Lipid Res 59:26–37CrossRefPubMedGoogle Scholar
  225. Qiao Z, Lei C, Fu Y, Li Y (2017) Rapid and sensitive detection of E. coli O157: H7 based on antimicrobial peptide functionalized magnetic nanoparticles and urease-catalyzed signal amplification. Anal Methods 9(35):5204–5210CrossRefGoogle Scholar
  226. Raetz CR (1986) Molecular genetics of membrane phospholipid synthesis. Annu Rev Genet 20(1):253–291CrossRefPubMedGoogle Scholar
  227. Raimondo D, Andreotti G, Saint N, Amodeo P, Renzone G, Sanseverino M, Zocchi I, Molle G, Motta A, Scaloni A (2005) A folding-dependent mechanism of antimicrobial peptide resistance to degradation unveiled by solution structure of distinction. Proc Natl Acad Sci U S A 102(18):6309–6314CrossRefPubMedPubMedCentralGoogle Scholar
  228. Rautenbach M, Troskie AM, Vosloo JA (2016) Antifungal peptides: to be or not to be membrane active. Biochimie 130:132–145CrossRefPubMedGoogle Scholar
  229. Ravi J, Bella A, Correia AJ, Lamarre B, Ryadnov MG (2015) Supramolecular amphipathicity for probing antimicrobial propensity of host defence peptides. Phys Chem Chem Phys 17(24):15608–15614CrossRefPubMedGoogle Scholar
  230. Renner LD, Weibel DB (2011) Cardiolipin microdomains localize to negatively curved regions of Escherichia coli membranes. Proc Natl Acad Sci U S A 108(15):6264–6269CrossRefPubMedPubMedCentralGoogle Scholar
  231. Rivas L, Luque-Ortega JR, Andreu D (2009) Amphibian antimicrobial peptides and Protozoa: lessons from parasites. Biochim Biophys Acta 1788(8):1570–1581CrossRefPubMedGoogle Scholar
  232. Rowlett VW, Mallampalli VK, Karlstaedt A, Dowhan W, Taegtmeyer H, Margolin W, Vitrac H (2017) The impact of membrane phospholipid alterations in Escherichia coli on cellular function and bacterial stress adaptation. J Bacteriol 199(13).
  233. Ruiz J, Calderon J, Rondón-Villarreal P, Torres R (2014) Analysis of structure and hemolytic activity relationships of antimicrobial peptides (AMPs). In: Advances in computational biology. Springer, Cham, pp 253–258CrossRefGoogle Scholar
  234. Russell AL, Kennedy AM, Spuches AM, Venugopal D, Bhonsle JB, Hicks RP (2010) Spectroscopic and thermodynamic evidence for antimicrobial peptide membrane selectivity. Chem Phys Lipids 163(6):488–497CrossRefPubMedGoogle Scholar
  235. Saeed S, Zafar J, Khan B, Akhtar A, Qurieshi S, Fatima S, Ahmad N, Irfanullah J (2013) Utility of 99mTc-labelled antimicrobial peptide ubiquicidin (29-41) in the diagnosis of diabetic foot infection. Eur J Nucl Med Mol Imaging 40(5):737–743CrossRefPubMedGoogle Scholar
  236. Salick DA, Kretsinger JK, Pochan DJ, Schneider JP (2007) Inherent antibacterial activity of a peptide-based β-hairpin hydrogel. J Am Chem Soc 129(47):14793–14799CrossRefPubMedPubMedCentralGoogle Scholar
  237. Sal-Man N, Oren Z, Shai Y (2002) Preassembly of membrane-active peptides is an important factor in their selectivity toward target cells. Biochemistry 41(39):11921–11930CrossRefPubMedGoogle Scholar
  238. Santos NC, Prieto M, Castanho MA (2003) Quantifying molecular partition into model systems of biomembranes: an emphasis on optical spectroscopic methods. Biochim Biophys Acta 1612(2):123–135CrossRefPubMedGoogle Scholar
  239. Savini F, Luca V, Bocedi A, Massoud R, Park Y, Mangoni ML, Stella L (2017) Cell-density dependence of host-defense peptide activity and selectivity in the presence of host cells. ACS Chem Biol 12(1):52–56CrossRefPubMedGoogle Scholar
  240. Savini F, Bobone S, Roversi D, Mangoni ML, Stella L (2018) From liposomes to cells: filling the gap between physicochemical and microbiological studies of the activity and selectivity of host-defense peptides. Pept Sci 110(5):e24041CrossRefGoogle Scholar
  241. Schmidtchen A, Pasupuleti M, M&oumlrgelin M, Davoudi M, Alenfall J, Chalupka A, Malmsten M (2009) Boosting antimicrobial peptides by hydrophobic oligopeptide end-tags. J Biol Chem 284(26):17584–17594CrossRefPubMedPubMedCentralGoogle Scholar
  242. Schmidtchen A, Ringstad L, Kasetty G, Mizuno H, Rutland MW, Malmsten M (2011) Membrane selectivity by W-tagging of antimicrobial peptides. Biochim Biophys Acta 1808(4):1081–1091CrossRefPubMedGoogle Scholar
  243. Schmidtchen A, Pasupuleti M, Malmsten M (2014) Effect of hydrophobic modifications in antimicrobial peptides. Adv Colloid Interf Sci 205:265–274CrossRefGoogle Scholar
  244. Schröder-Borm H, Willumeit R, Brandenburg K, Andrä J (2003) Molecular basis for membrane selectivity of NK-2, a potent peptide antibiotic derived from NK-lysin. Biochim Biophys Acta 1612(2):164–171CrossRefPubMedGoogle Scholar
  245. Schweizer F (2009) Cationic amphiphilic peptides with cancer-selective toxicity. Eur J Pharmacol 625(1–3):190–194CrossRefPubMedGoogle Scholar
  246. Seelig J (2004) Thermodynamics of lipid–peptide interactions. Biochim Biophys Acta 1666(1):40–50CrossRefPubMedGoogle Scholar
  247. Seo MD, Won HS, Kim JH, Mishig-Ochir T, Lee BJ (2012) Antimicrobial peptides for therapeutic applications: a review. Molecules 17(10):12276–12286CrossRefPubMedPubMedCentralGoogle Scholar
  248. Shai Y, Oren Z (1996) Diastereomers of cytolysins, a novel class of potent antibacterial peptides. J Biol Chem 271(13):7305–7308CrossRefPubMedGoogle Scholar
  249. Shai Y, Oren Z (2001) From “carpet” mechanism to de-novo designed diastereomeric cell-selective antimicrobial peptides. Peptides 22(10):1629–1641CrossRefPubMedGoogle Scholar
  250. Shankar SS, Benke SN, Nagendra N, Srivastava PL, Thulasiram HV, Gopi HN (2013) Self-assembly to function: design, synthesis, and broad spectrum antimicrobial properties of short hybrid E-vinylogous lipopeptides. J Med Chem 56(21):8468–8474CrossRefPubMedGoogle Scholar
  251. Shi X, Zhang X, Yao Q, He F (2017) A novel method for the rapid detection of microbes in blood using pleurocidin antimicrobial peptide functionalized piezoelectric sensor. J Microbiol Methods 133:69–75CrossRefPubMedGoogle Scholar
  252. Shin SY, Yang ST, Park EJ, Eom SH, Song WK, Kim JI, Lee SH, Lee MK, Lee DG, Hahm KS, Kim Y (2001) Antibacterial, antitumor and hemolytic activities of α-helical antibiotic peptide, P18 and its analogs. J Pept Res 58(6):504–514CrossRefPubMedGoogle Scholar
  253. Shriver-Lake LC, North SH, Dean SN, Taitt CR (2012) Antimicrobial peptides for detection and diagnostic assays. In: Designing receptors for the next generation of biosensors. Springer, Berlin, pp 85–104Google Scholar
  254. Silva RR, Avelino KY, Ribeiro KL, Franco OL, Oliveira MD, Andrade CA (2014) Optical and dielectric sensors based on antimicrobial peptides for microorganism diagnosis. Front Microbiol 5:443. CrossRefPubMedPubMedCentralGoogle Scholar
  255. Simon SA, McIntosh TJ (2002) Peptide-lipid interactions, current topics in membranes, vol 52. Elsevier, AmsterdamGoogle Scholar
  256. Skerlavaj B, Renato Gennaro R, Luigi Bagella L, Laura Merluzzi L, Angela Risso A, Zanetti M (1996) Biological characterization of two novel cathelicidin-derived peptides and identification of structural requirements for their antimicrobial and cell lytic activities. J Biol Chem 271(45):28375–28381CrossRefPubMedPubMedCentralGoogle Scholar
  257. Slaninová J, Mlsová V, Kroupová H, Alán L, Tůmová T, Monincová L, Borovičková L, Fučík V, Ceřovský V (2012) Toxicity study of antimicrobial peptides from wild bee venom and their analogs toward mammalian normal and cancer cells. Peptides 33(1):18–26CrossRefPubMedGoogle Scholar
  258. Snoussi M, Talledo JP, Del Rosario NA, Ha BY, Kosmrlj A, Taheri-Araghi S (2018) Heterogeneous absorption of antimicrobial peptide LL37 in Escherichia coli cells enhances population survivability. eLife 7:e38174Google Scholar
  259. Son M, Lee Y, Hwang H, Hyun S, Yu J (2013) Disruption of interactions between hydrophobic residues on nonpolar faces is a key determinant in decreasing hemolysis and increasing antimicrobial activities of α-helical amphipathic peptides. ChemMedChem 8(10):1638–1642CrossRefPubMedGoogle Scholar
  260. Song YM, Yang ST, Lim SS, Kim Y, Hahm KS, Kim JI, Shin SY (2004) Effects of L-or D-Pro incorporation into hydrophobic or hydrophilic helix face of amphipathic α-helical model peptide on structure and cell selectivity. Biochem Biophys Res Commun 314(2):615–621CrossRefPubMedGoogle Scholar
  261. Song YM, Park Y, Lim SS, Yang ST, Woo ER, Park IS, Lee JS, Kim JI, Hahm KS, Kim Y, Shin SY (2005) Cell selectivity and mechanism of action of antimicrobial model peptides containing peptoid residues. Biochemistry 44(36):12094–12106CrossRefPubMedGoogle Scholar
  262. Sood R, Kinnunen PK (2008) Cholesterol, lanosterol, and ergosterol attenuate the membrane association of LL-37 (W27F) and temporin L. Biochim Biophys Acta 1778(6):1460–1466CrossRefPubMedGoogle Scholar
  263. Sood R, Domanov Y, Pietiäinen M, Kontinen VP, Kinnunen PK (2008) Binding of LL-37 to model biomembranes: insight into target vs host cell recognition. Biochim Biophys Acta 1778(4):983–996CrossRefPubMedGoogle Scholar
  264. Stark M, Liu LP, Deber CM (2002) Cationic hydrophobic peptides with antimicrobial activity. Antimicrob Agents Chemother 46(11):3585–3590CrossRefPubMedPubMedCentralGoogle Scholar
  265. Starr CG, He J, Wimley WC (2016) Host cell interactions are a significant barrier to the clinical utility of peptide antibiotics. ACS Chem Biol 11(12):3391–3399CrossRefPubMedPubMedCentralGoogle Scholar
  266. Steiner H, Andreu D, Merrifield RB (1988) Binding and action of cecropin and cecropin analogues: antibacterial peptides from insects. Biochim Biophys Acta 939(2):260–266CrossRefPubMedGoogle Scholar
  267. Stella L, Mazzuca C, Venanzi M, Palleschi A, Didone M, Formaggio F, Toniolo C, Pispisa B (2004) Aggregation and water-membrane partition as major determinants of the activity of the antibiotic peptide trichogin GA IV. Biophys J 86(2):936–945CrossRefPubMedPubMedCentralGoogle Scholar
  268. Storch J, Kleinfeld AM (1985) The lipid structure of biological membranes. Trends Biochem Sci 10(11):418–421CrossRefGoogle Scholar
  269. Strandberg E, Tiltak D, Ieronimo M, Kanithasen N, Wadhwani P, Ulrich AS (2007) Influence of C-terminal amidation on the antimicrobial and hemolytic activities of cationic -helical peptides. Pure Appl Chem 79(4):717–728CrossRefGoogle Scholar
  270. Strömstedt AA, Ringstad L, Schmidtchen A, Malmsten M (2010) Interaction between amphiphilic peptides and phospholipid membranes. Curr Opin Colloid Interface Sci 15(6):467–478CrossRefGoogle Scholar
  271. Swierstra J, Kapoerchan V, Knijnenburg A, van Belkum A, Overhand M (2016) Structure, toxicity and antibiotic activity of gramicidin S and derivatives. Eur J Clin Microbiol Infect Dis 35(5):763–769CrossRefPubMedPubMedCentralGoogle Scholar
  272. Tachi T, Epand RF, Epand RM, Matsuzaki K (2002) Position-dependent hydrophobicity of the antimicrobial magainin peptide affects the mode of peptide-lipid interactions and selective toxicity. Biochemistry 41(34):10723–10731CrossRefPubMedGoogle Scholar
  273. Takahashi D, Shukla SK, Prakash O, Zhang G (2010) Structural determinants of host defense peptides for antimicrobial activity and target cell selectivity. Biochimie 92(9):1236–1241CrossRefPubMedGoogle Scholar
  274. Teixeira V, Feio MJ, Bastos M (2012) Role of lipids in the interaction of antimicrobial peptides with membranes. Prog Lipid Res 51(2):149–177CrossRefPubMedGoogle Scholar
  275. Thennarasu S, Nagaraj R (1996) Specific antimicrobial and hemolytic activities of 18-residue peptides derived from the amino terminal region of the toxin pardaxin. Protein Eng Des Sel 9(12):1219–1224CrossRefGoogle Scholar
  276. Tian X, Sun F, Zhou XR, Luo SZ, Chen L (2015) Role of peptide self-assembly in antimicrobial peptides. J Pept Sci 21(7):530–539CrossRefPubMedGoogle Scholar
  277. Tiozzo E, Rocco G, Tossi A, Romeo D (1998) Wide-spectrum antibiotic activity of synthetic, amphipathic peptides. Biochem Biophys Res Commun 249(1):202–206CrossRefPubMedGoogle Scholar
  278. Toniolo C, Crisma M, Formaggio F, Peggion C, Monaco V, Goulard C, Rebuffat S, Bodo B (1996) Effect of N α-acyl chain length on the membrane-modifying properties of synthetic analogs of the lipopeptaibol trichogin GA IV. J Am Chem Soc 118(21):4952–4958CrossRefGoogle Scholar
  279. Tossi A (2011) Design and engineering strategies for synthetic antimicrobial peptides. In: Prokaryotic antimicrobial peptides. Springer, New York, pp 81–98CrossRefGoogle Scholar
  280. Tossi A, Sandri L, Giangaspero A (2000) Amphipathic, α-helical antimicrobial peptides. Biopolymers 55(1):4–30CrossRefPubMedGoogle Scholar
  281. Tu Z, Hao J, Kharidia R, Meng XG, Liang JF (2007) Improved stability and selectivity of lytic peptides through self-assembly. Biochem Biophys Res Commun 361(3):712–717CrossRefPubMedGoogle Scholar
  282. Tytler EM, Anantharamaiah GM, Walker DE, Mishra VK, Palgunachari MN, Segrest JP (1995) Molecular basis for prokaryotic specificity of magainin-induced lysis. Biochemistry 34(13):4393–4401CrossRefPubMedGoogle Scholar
  283. Uematsu N, Matsuzaki K (2000) Polar angle as a determinant of amphipathic α-helix-lipid interactions: a model peptide study. Biophys J 79(4):2075–2083CrossRefPubMedPubMedCentralGoogle Scholar
  284. Uggerhøj LE, Poulsen TJ, Munk JK, Fredborg M, Sondergaard TE, Frimodt-Moller N, Hansen PR, Wimmer R (2015) Rational design of alpha-helical antimicrobial peptides: do’s and don’ts. ChemBioChem 16(2):242–253CrossRefPubMedGoogle Scholar
  285. Vallejo E, Martinez I, Tejero A, Hernandez S, Jimenez L, Bialostozky D, Sanchez G, Ilarraza H, Ferro-Flores G (2008) Clinical utility of 99mTc-labeled ubiquicidin 29–41 antimicrobial peptide for the scintigraphic detection of mediastinitis after cardiac surgery. Arch Med Res 39(8):768–774CrossRefPubMedGoogle Scholar
  286. van der Weerden NL, Bleackley MR, Anderson MA (2013) Properties and mechanisms of action of naturally occurring antifungal peptides. Cell Mol Life Sci 70(19):3545–3570CrossRefPubMedGoogle Scholar
  287. Veiga AS, Sinthuvanich C, Gaspar D, Franquelim HG, Castanho MA, Schneider JP (2012) Arginine-rich self-assembling peptides as potent antibacterial gels. Biomaterials 33(35):8907–8916CrossRefPubMedPubMedCentralGoogle Scholar
  288. Velduhizen EJA, Scheenstra MR, Tjeerdsma-van Bokhoven JLM, Coorens M, Schneider VAF, Bikker FJ, van Dijk A, Haagsman HP (2017) Antimicrobial and immunomodulatory activity of PMAP-23 derived peptides. Protein Pept Lett 24(7):609–616Google Scholar
  289. Verkleij AJ, Zwaal RFA, Roelofsen B, Comfurius P, Kastelijn D, van Deenen LLM (1973) The asymmetric distribution of phospholipids in the human red cell membrane. A combined study using phospholipases and freeze-etch electron microscopy. Biochim Biophys Acta 323(2):178–193CrossRefPubMedGoogle Scholar
  290. Verly RM, Rodrigues MA, Daghastanli KRP, Denadai AML, Cuccovia IM, Bloch C Jr, Frezard F, Santoro MM, Pilo-Veloso D, Bemquerer MP (2008) Effect of cholesterol on the interaction of the amphibian antimicrobial peptide DD K with liposomes. Peptides 29(1):15–24CrossRefPubMedGoogle Scholar
  291. Vermeer LS, Lan Y, Abbate V, Ruh E, Bui TT, Wilkinson L, Jumagulova E, Kozlowska J, Patel J, McIntyre CA, Yam WC, Siu GKH, Atkinson RA, Lam JKW, Bansal SS, Drake AF, Mitchell GH, Mason AJ (2012) Conformational flexibility determines selectivity and Antibacterial, Antiplasmodium, and Anticancer potency of cationic α-helical peptides. J Biol Chem 287(41):34120–34133CrossRefPubMedPubMedCentralGoogle Scholar
  292. Virtanen JA, Cheng KH, Somerharju P (1998) Phospholipid composition of the mammalian red cell membrane can be rationalized by a superlattice model. Proc Natl Acad Sci U S A 95(9):4964–4969CrossRefPubMedPubMedCentralGoogle Scholar
  293. Wade D, Boman A, Wåhlin B, Drain CM, Andreu D, Boman HG, Merrifield RB (1990) All-D amino acid-containing channel-forming antibiotic peptides. Proc Natl Acad Sci U S A 87(12):4761–4765CrossRefPubMedPubMedCentralGoogle Scholar
  294. Wade D, Silberring J, Soliymani R, Heikkinen S, Kilpeläinen I, Lankinen H, Kuusela P (2000) Antibacterial activities of temporin A analogs. FEBS Lett 479(1–2):6–9CrossRefPubMedGoogle Scholar
  295. Wakabayashi H, Matsumoto H, Hashimoto K, Teraguchi S, Takase M, Hayasawa H (1999) N-Acylated and D enantiomer derivatives of a nonamer core peptide of lactoferricin B showing improved antimicrobial activity. Antimicrob Agents Chemother 43(5):1267–1269CrossRefPubMedPubMedCentralGoogle Scholar
  296. Wang G (ed) (2017) Antimicrobial peptides: discovery, design and novel therapeutic strategies. CABI Publishing, Cambridge, MAGoogle Scholar
  297. Wang H, Xu K, Liu L, Tan JP, Chen Y, Li Y, Fan W, Wei Z, Sheng J, Yang YY, Li L (2010) The efficacy of self-assembled cationic antimicrobial peptide nanoparticles against Cryptococcus neoformans for the treatment of meningitis. Biomaterials 31(10):2874–2881CrossRefPubMedGoogle Scholar
  298. Wang J, Chou S, Xu L, Zhu X, Dong N, Shan A, Chen Z (2015) High specific selectivity and membrane-active mechanism of the synthetic centrosymmetric α-helical peptides with Gly-Gly pairs. Sci Rep 5:15963CrossRefPubMedPubMedCentralGoogle Scholar
  299. Wang J, Chou S, Yang Z, Yang Y, Wang Z, Song J, Dou X, Shan A (2018) Combating drug-resistant fungi with novel imperfectly amphipathic palindromic peptides. J Med Chem 61(9):3889–3907CrossRefPubMedGoogle Scholar
  300. Welling MM, Nibbering PH, Paulusma-Annema A, Hiemstra PS, Pauwels EK, Calame W (1999) Imaging of bacterial infections with 99mTc-labeled human neutrophil peptide-1. J Nucl Med 40(12):2073–2080PubMedGoogle Scholar
  301. Welling MM, Paulusma-Annema A, Balter HS, Pauwels EK, Nibbering PH (2000) Technetium-99m labelled antimicrobial peptides discriminate between bacterial infections and sterile inflammations. Eur J Nucl Med 27(3):292–301CrossRefPubMedGoogle Scholar
  302. White DA (1973) The phospholipid composition of mammalian tissues. In: Ansell GB, Hawthorne JN, Dawson RMC (eds) Form and function of phospholipids. Elsevier, Amsterdam, pp 441–482Google Scholar
  303. White SH, Wimley WC (1999) Membrane protein folding and stability: physical principles. Annu Rev Biophys Biomol Struct 28(1):319–365CrossRefPubMedGoogle Scholar
  304. Wiegand I, Hilpert K, Hancock REW (2008) Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 3(2):163–175CrossRefPubMedGoogle Scholar
  305. Wieprecht T, Seelig J (2002) Isothermal titration calorimetry for studying interactions between peptides and lipid membranes. Curr Top Membr 52:31–56CrossRefGoogle Scholar
  306. Wieprecht T, Dathe M, Beyermann M, Krause E, Maloy WL, MacDonald DL, Bienert M (1997a) Peptide hydrophobicity controls the activity and selectivity of magainin 2 amide in interaction with membranes. Biochemistry 36(20):6124–6132CrossRefPubMedGoogle Scholar
  307. Wieprecht T, Dathe M, Krause E, Beyermann M, Maloy WL, MacDonald DL, Bienert M (1997b) Modulation of membrane activity of amphipathic, antibacterial peptides by slight modifications of the hydrophobic moment. FEBS Lett 417(1):135–140CrossRefPubMedGoogle Scholar
  308. Wieprecht T, Dathe M, Epand RM, Beyermann M, Krause E, Maloy WL, MacDonald DL, Bienert M (1997c) Influence of the angle subtended by the positively charged helix face on the membrane activity of amphipathic, antibacterial peptides. Biochemistry 36(42):12869–12880CrossRefPubMedGoogle Scholar
  309. Wimley WC (2010a) Energetics of peptide and protein binding to lipid membranes. In: Proteins membrane binding and pore formation. Springer, New York, pp 14–23CrossRefGoogle Scholar
  310. Wimley WC (2010b) Describing the mechanism of antimicrobial peptide action with the interfacial activity model. ACS Chem Biol 5(10):905–917CrossRefPubMedPubMedCentralGoogle Scholar
  311. Wimley WC, Hristova K (2011) Antimicrobial peptides: successes, challenges and unanswered questions. J Membr Biol 239(1–2):27–34CrossRefPubMedPubMedCentralGoogle Scholar
  312. Wu G, Wu H, Fan X, Zhao R, Li X, Wang S, Ma Y, Shen Z, Xi T (2010) Selective toxicity of antimicrobial peptide S-thanatin on bacteria. Peptides 31(9):1669–1673CrossRefPubMedGoogle Scholar
  313. Yang ST, Shin SY, Kim YC, Kim Y, Hahm KS, Kim JI (2002) Conformation-dependent antibiotic activity of tritrpticin, a cathelicidin-derived antimicrobial peptide. Biochem Biophys Res Commun 296(5):1044–1050CrossRefPubMedGoogle Scholar
  314. Yang ST, Lee JY, Kim HJ, Eu YJ, Shin SY, Hahm KS, Kim JI (2006a) Contribution of a central proline in model amphipathic α-helical peptides to self-association, interaction with phospholipids, and antimicrobial mode of action. FEBS J 273(17):4040–4054CrossRefPubMedGoogle Scholar
  315. Yang ST, Jeon JH, Kim Y, Shin SY, Hahm KS, Kim JI (2006b) Possible role of a PXXP central hinge in the antibacterial activity and membrane interaction of PMAP-23, a member of cathelicidin family. Biochemistry 45(6):1775–1784CrossRefPubMedGoogle Scholar
  316. Yau WM, Wimley WC, Gawrisch K, White SH (1998) The preference of tryptophan for membrane interfaces. Biochemistry 37(42):14713–14718CrossRefPubMedGoogle Scholar
  317. Yeaman MR, Yount NY (2003) Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 55(1):27–55CrossRefPubMedGoogle Scholar
  318. Yeung AT, Gellatly SL, Hancock REW (2011) Multifunctional cationic host defence peptides and their clinical applications. Cell Mol Life Sci 68(13):2161CrossRefPubMedGoogle Scholar
  319. Zelezetsky I, Tossi A (2006) Alpha-helical antimicrobial peptides-using a sequence template to guide structure–activity relationship studies. Biochim Biophys Acta 1758(9):1436–1449CrossRefPubMedGoogle Scholar
  320. Zelezetsky I, Pacor S, Pag U, Papo N, Shai Y, Sahl HG, Tossi A (2005) Controlled alteration of the shape and conformational stability of α-helical cell-lytic peptides: effect on mode of action and cell specificity. Biochem J 390(1):177–188CrossRefPubMedPubMedCentralGoogle Scholar
  321. Zhang L, Benz R, Hancock REW (1999) Influence of proline residues on the antibacterial and synergistic activities of R-helical peptides. Biochemistry 38(25):8102–8111CrossRefPubMedGoogle Scholar
  322. Zhang Y, Lu H, Lin Y, Cheng J (2011) Water-soluble polypeptides with elongated, charged side chains adopt ultrastable helical conformations. Macromolecules 44(17):6641–6644CrossRefPubMedPubMedCentralGoogle Scholar
  323. Zhang SK, Song JW, Gong F, Li SB, Chang HY, Xie HM, Gao HW, Tan YX, Ji SP (2016) Design of an α-helical antimicrobial peptide with improved cell-selective and potent anti-biofilm activity. Sci Rep 6:27394CrossRefPubMedPubMedCentralGoogle Scholar
  324. Zhou NE, Mant CT, Hodges RS (1990) Effect of preferred binding domains on peptide retention behavior in reversed-phase chromatography: amphipathic alpha-helices. Pept Res 3(1):8–20PubMedGoogle Scholar
  325. Zhu WL, Hahm K, Shin SY (2007a) Cathelicidin-derived Trp/Pro-rich antimicrobial peptides with lysine peptoid residue (Nlys): therapeutic index and plausible mode of action. J Pept Sci 13(8):529–535CrossRefPubMedGoogle Scholar
  326. Zhu WL, Song YM, Park Y, Park KH, Yang ST, Kim JI, Park IS, Hahm KS, Shin SY (2007b) Substitution of the leucine zipper sequence in melittin with peptoid residues affects self-association, cell selectivity, and mode of action. Biochim Biophys Acta 1768(6):1506–1517CrossRefPubMedGoogle Scholar
  327. Zhu WL, Nan YH, Hahm K, Shin SY (2007c) Cell selectivity of an antimicrobial peptide melittin diastereomer with D-amino acid in the leucine zipper sequence. J Biochem Mol Biol 40(6):1090–1094PubMedGoogle Scholar
  328. Zhu WL, Hahm KS, Shin SY (2009) Cell selectivity and mechanism of action of short antimicrobial peptides designed from the cell-penetrating peptide Pep-1. J Pept Sci 15(9):569–575CrossRefPubMedGoogle Scholar
  329. Zou R, Zhu X, Tu Y, Wu J, Landry MP (2018) Activity of antimicrobial peptide aggregates decreases with increased cell membrane embedding free energy cost. Biochemistry 57(18):2606–2610CrossRefPubMedGoogle Scholar
  330. Zwaal RFA, Roelofsen B, Colley CM (1973) Localization of red cell membrane constituents. Biochim Biophys Acta 300(2):159–182CrossRefPubMedGoogle Scholar
  331. Zwaal RFA, Roelsfsen B, Comfurius P, van Deenen LLM (1975) Organization of phospholipids in human red cell membranes as detected by the action of various purified phospholipases. Biochim Biophys Acta 406(1):83–96CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Chemical Science and TechnologiesUniversity of Rome Tor VergataRomeItaly

Personalised recommendations