Advertisement

Sex Steroids, Cognate Receptors, and Aging

  • Gargi Bagchi
  • Amit K. Dash
  • Sanjay Kumar
  • Shoulei Jiang
  • Soon C. Ahn
  • Bandana ChatterjeeEmail author
  • Rakesh K. TyagiEmail author
Chapter

Abstract

Aging signals a gradual deregulation of physiological homeostasis. Steroid hormone actions are an important contributor to this deregulation because of their key involvements in the growth, metabolism, survival, and functional vigor of cells, tissues, and organs. Accumulated evidences show that aging is associated with reduced circulating levels of male and female sex hormones, i.e., androgens and estrogens, respectively, which in turn alter physiological milieu and lead to specific deficits in the organismal vitality. While a number of articles in the literature have provided a generalized description of age-related decline of physiological control mechanisms, in the current chapter, we have focused specifically on the role of sex hormones and sex steroid receptors in age-related bodily dysfunctions. Various segments of our article delved into the current understanding on influences of sex steroids and steroid receptors. Specifically, the roles of androgens, estrogens, and cognate sex steroid receptors in age-accompanied physiological and pathophysiological changes in gene expression and organ functions are discussed. In addition to citing our own studies, information from diverse fields of biology and medicine is taken into consideration in order to present a comprehensive view of sex steroid action with advancing age.

Keywords

Aging Androgens Estrogens Steroid receptors 

Notes

Acknowledgments

The RKT laboratory has been supported by research grants from the Government of India agencies including UPE-II, UGC (major), CSIR, DST, and ICMR. Central grants from ICMR-CAR, UGC-SAP, and DST-PURSE are also acknowledged. GB was supported by BioCaRE grant from DBT, India. Research in the BC laboratory was supported by Federal grants in the USA (VA-1I01BX000280 and VA-RCS (IK6BX004207); NIH-R01AG-10486; DOD-W81XWH-14-1-0606) and a Foundation grant from Morrison Trust, San Antonio, Texas.

References

  1. 1.
    Zajacic-Rotkvic V, Kavur L, Maja C-B (2010) Hormones and aging. Acta Clin Croat 49:549–554Google Scholar
  2. 2.
    Horstman AM, Gerrits KH, Beltman MJ, Koppe PA, Janssen TW, de Haan A (2010) Intrinsic properties of the knee extensor muscles after subacute stroke. Arch Phys Med Rehabil 91:123–128PubMedCrossRefGoogle Scholar
  3. 3.
    Zaidi KS, Shen W-Z, Azhar S (2012) Impact of aging on steroid hormone biosynthesis and Secretion. Open Longevity Sci 6:1–30CrossRefGoogle Scholar
  4. 4.
    Eskin BA (1978) Sex hormones and aging. Adv Exp Med Biol 97:207–224PubMedCrossRefGoogle Scholar
  5. 5.
    Miller WL, Auchus RJ (2011) The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr Rev 321:81–151CrossRefGoogle Scholar
  6. 6.
    Kallen CB (2004) Steroid hormone synthesis in pregnancy. Obstet Gynecol Clin N Am 31:795–816CrossRefGoogle Scholar
  7. 7.
    Arlt W, Stewart PM (2005) Adrenal corticosteroid biosynthesis, metabolism and action. Endocrinol Metab Clin N Am 34:293–313CrossRefGoogle Scholar
  8. 8.
    Kendall B, Eston R (2002) Exercise-induced muscle damage and the potential protective role of estrogen. Sports Med 32:103–123PubMedCrossRefGoogle Scholar
  9. 9.
    Goodman-Gruen D, Barrett-Connor E (2000) Sex differences in the association of endogenous sex hormone levels and glucose tolerance status in older men and women. Diabetes Care 23:912–918PubMedCrossRefGoogle Scholar
  10. 10.
    Horstman AM, Dillon EL, Urban RJ, Sheffield-Moore M (2012) The Role of Androgens and Estrogens on Healthy Aging and Longevity. J Gerontol A Biol Sci Med Sci 67:1140–1152PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Kumar S, Saradhi M, Chaturvedi NK, Tyagi RK (2006) Intracellular localization and nucleocytoplasmic trafficking of steroid receptors: an overview review. Mol Cell Endocrinol 246:147–156PubMedCrossRefGoogle Scholar
  12. 12.
    Kumar S, Kumar S, Thakur K, Kumar S, Bagchi G, Tyagi RK (2016) Androgen receptor signaling by growth factors in androgen-independent prostate cancer: recent advances and emerging perspectives. In: Haldar C, Gupta S, Goswami S (eds) Updates on integrative physiology and comparative endocrinology. Press and Publication Division, Banaras Hindu University, Varanasi. ISBN: 81-85305-72-2Google Scholar
  13. 13.
    Tyagi RK, Lavrovsky Y, Ahn SC, Song CS, Chatterjee B, Roy AK (2000) Dynamics of intracellular movement and nucleocytoplasmic recycling of the ligand-activated androgen receptor in living cells. Mol Endocrinol 14:1162–1174PubMedCrossRefGoogle Scholar
  14. 14.
    Htun H, Holth LT, Walker D, Davie JR, Hager GL (1999) Direct visualization of the human estrogen receptor alpha reveals a role for ligand in the nuclear distribution of the receptor. Mol Biol Cell 10:471–486PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Roy AK, Tyagi RK, Song CS, Lavrovsky Y, Ahn SC, Oh TS, Chatterjee B (2001) Androgen receptor: structural domains and functional dynamics after ligand-receptor interaction. Ann NY Acad Sci 949:44–57PubMedCrossRefGoogle Scholar
  16. 16.
    Dehm S, Tindall D (2011) Alternatively spliced androgen receptor variants. Endocrine Relat Cancer 18:R183–R196CrossRefGoogle Scholar
  17. 17.
    Evans RM, Mangelsdorf DJ (2014) Nuclear receptors, RXR and the big bang. Cell 157:255–266PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Ni L, Llewellyn R, Kesler CT, Kelley JB, Spencer A, Snow CL, Shank L, Paschal BM (2013) Androgen Induces a Switch from Cytoplasmic Retention to Nuclear Import of the Androgen Receptor. Mol Cell Biol 33:4766–4778PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Cato L, Neeb A, Brown M, Cato ACB (2014) Control of steroid receptor dynamics and function by genomic actions of the cochaperones p23 and Bag-1L. Nucl Recept Signal 12:e005.  https://doi.org/10.1621/nrs.12005 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Rivera OJ, Song CS, Centonze VE, Lechleiter JD, Chatterjee B, Roy AK (2003) Role of the PML body in the dynamic interaction between the androgen receptor and steroid receptor coactivator-1 in living cells. Mol Endocrinol 17:128–140PubMedCrossRefGoogle Scholar
  21. 21.
    Rosenfeld MG, Lunyak VV, Glass CK (2006) Sensors and signals: a coactivator/corepressor/epigenetic code for integrating signal-dependent programs of transcriptional response. Genes Dev 20:1405–1418PubMedCrossRefGoogle Scholar
  22. 22.
    Cai C, Yuan X, Balk SP (2013) Androgen receptor epigenetics. Transl Androl Urol 2:148–157PubMedPubMedCentralGoogle Scholar
  23. 23.
    Zhang A, Zhao JC, Kim J, Chakravarti D, Mo YY, Yu J (2015) LncRNA HOTAIR enhances the androgen-receptor-mediated transcriptional program and drives castration-resistant prostate cancer. Cell Rep 13:209–221PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Pascal LE, Wang Z (2014) Unzipping androgen action through ZIP9: a novel membrane androgen receptor. Endocrinol 155:4120–4123CrossRefGoogle Scholar
  25. 25.
    Bagchi G, Wu J, French J, Kim J, Moniri NH, Daaka Y (2008) Androgens transduce the Gαs-mediated activation of protein kinase A in prostate cells. Cancer Res 68(9).  https://doi.org/10.1158/0008-5472
  26. 26.
    Dagar M, Bagchi G (2015) Cross talk between protein kinase A and androgen signaling pathway. J Endocrinol Reprod 19:1–6CrossRefGoogle Scholar
  27. 27.
    Zhou J, Richardson M, Reddy V, Menon M, Barrack ER, Reddy GP, Kim SH (2013) Structural and functional association of androgen receptor with telomeres in prostate cancer cells. Aging 5:3–17PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Ma W-L, Lai H-C, Yeh S, Cai X, Chang C (2014) Androgen receptor roles in hepatocellular carcinoma, cirrhosis, and hepatitis. Endocr Relat Cancer 21:R165–R182PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Lin H-Y, Yu I-C, Wang R-S, Chen Y-T, Liu N-C, Altuwaijri S, Hsu CL, Ma W-L, Jokinen J, Sparks JD, Yeh S, Chang C (2008) Increased hepatic steatosis and insulin resistance in mice lacking hepatic androgen receptor. Hepatology 47:1924–1935PubMedCrossRefGoogle Scholar
  30. 30.
    Song CS, Jung MH, Kim SC, Hassan T, Roy AK, Chatterjee B (1998) Tissue-specific and androgen-repressible regulation of the rat dehydroepiandrosterone sulfotransferase gene promoter. J Biol Chem 273:21856–21866PubMedCrossRefGoogle Scholar
  31. 31.
    Prakash CP, Zuniga B, Song CS, Jiang S, Cropper JD, Park S, Chatterjee B (2015) Nuclear receptors in drug metabolism, drug response and drug interactions. Nucl Recept Res 2:1–20CrossRefGoogle Scholar
  32. 32.
    Kanda T, Yokosuka O (2015) The androgen receptor as an emerging target in hepatocellular carcinoma. J Hepatocell Carcinoma 2:91–99PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Kemp CJ, Leary CN, Drinkwater NR (1989) Promotion of murine hepatocarcinogenesis by testosterone is androgen receptor-dependent but not cell autonomous. Proc Natl Acad Sci USA 86:7505–7509PubMedCrossRefGoogle Scholar
  34. 34.
    Ma W-L, Hsu C-L, Yeh C-C, Wu M-H, Huang C-K, Jeng L-B, Hung Y-C, Lin T-Y, Yeh S, Chang C (2012) Hepatic androgen receptor suppresses hepatocellular carcinoma metastasis through modulation of cell migration and anoikis. Hepatology 56:176–185PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Shi LH, Ko S, Kim S, Echchgadda I, Oh T, Song CS, Chatterjee B (2008) Reciprocal synamics of the tumor suppressor p53 and poly(ADP-ribose)polymerase PARP-1 regulates loss of androgen receptor in aging and oxidative stress. J Biol Chem 283:36474–36485PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Song CS, Rao TR, Demyan WF, Mancini MA, Chatterjee B, Roy AK (1991) Androgen receptor messenger ribonucleic acid (mRNA) in the rat liver: changes in mRNA levels during maturation, aging, and calorie restriction. Endocrinol 128:349–356CrossRefGoogle Scholar
  37. 37.
    Chatterjee B, Fernandes G, Yu BP, Song C, Kim JM, Demyan W, Roy AK (1989) Calorie restriction delays age-dependent loss in androgen responsiveness of the rat liver. FASEB J 3:169–173PubMedCrossRefGoogle Scholar
  38. 38.
    Roy AK, Oh T, Rivera O, Mubiru J, Song CS, Chatterjee B (2002) Impacts of transcriptional regulation on aging and senescence. Ageing Res Rev 1:367–380PubMedCrossRefGoogle Scholar
  39. 39.
    Supakar PC, Song CS, Jung MH, Slomczynska MA, Kim JM, Vellanoweth RL, Chatterjee B, Roy AK (1993) A novel regulatory element associated with age-dependent expression of the rat androgen receptor gene. J Biol Chem 268:26400–26408PubMedGoogle Scholar
  40. 40.
    Supakar PC, Jung MH, Song CS, Chatterjee B, Roy AK (1995) Nuclear factor кB functions as a negative regulator for the rat androgen receptor gene and NF-кB activity increases during the age-dependent desensitization of the liver. J Biol Chem 270:837–842PubMedCrossRefGoogle Scholar
  41. 41.
    Ko SY, Shi LH, Song CS, Chatterjee B (2008) Interplay of NF-кB and B-myb in TNFα-controlled negative regulation of androgen receptor expression. Mol Endocrinol 22:273–286PubMedCrossRefGoogle Scholar
  42. 42.
    Lavorvsky Y, Chatterjee B, Clark RA, Roy AK (2000) Role of redox-regulated transcription factors in inflammation, aging and age-related diseases. Exp Gerontol 35:521–532CrossRefGoogle Scholar
  43. 43.
    Kraus WL, Lis JT (2003) PARP goes transcription. Cell 113:677–683PubMedCrossRefGoogle Scholar
  44. 44.
    Mouchiroud L, Houtkooper RH, Moullan N, Katsyuba E, Ryu D, Guarente L, Auwerx J et al (2013) The NAD+/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling. Cell 154:430–441PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Gomes AP, Price NL, Ling AJY, Moslehi JJ, Montgomery MK, Rajman L, Bell EL, Sinclair DA et al (2013) Declining NAD+ induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell 155:1624–1638PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Li J, Bonkowski MS, Moniot S, Zhang D, Hubbard BP, Ling AJY, Steegborn C, Sinclair DA et al (2017) A conserved NAD+ binding pocket that regulates protein-protein interactions during aging. Science 355:1312–1317PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Prins GS, Jung MH, Vellanoweth RL, Chatterjee B, Roy AK (1996) Age-dependent expression of the androgen receptor gene in the prostate and its implication in glandular differentiation and hyperplasia. Dev Genet 18:99–106PubMedCrossRefGoogle Scholar
  48. 48.
    Cunha GR (1996) Growth factors as mediators of androgen action during male urogenital development. Prostate 6:22–25PubMedCrossRefGoogle Scholar
  49. 49.
    Shi X, Gippi J, Dries M, Bushman W (2014) Prostate progenitor cells proliferate in response to castration. Stem Cell Res 13:154–163PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Vignozzi L, Gacci M, Maggi M (2016) Lower urinary tract symptoms, benign prostatic hyperplasia and metabolic syndrome. Nat Rev Urol 13:108–119PubMedCrossRefGoogle Scholar
  51. 51.
    Vital P, Castro P, Tsang S, Ittmann M (2014) The senescence-associated secretory phenotype promotes benign prostatic hyperplasia. Am J Pathol 184:721–733PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Coppé J-P, Desprez P-Y, Krtolical A, Campisi J (2010) The senescence-associated secretory phenotype: the dark side of tumor suppression. Ann Rev Pathol 5:99–118CrossRefGoogle Scholar
  53. 53.
    Begley L, Monteleon C, Shah RB, MacDonald JW, Macoska JA (2005) CXCL12 overexpression and secretion by aging fibroblasts enhance human prostate epithelial proliferation in vitro. Aging Cell:291–298PubMedCrossRefGoogle Scholar
  54. 54.
    Harshman LC, Wang X, Nakabayashi M, Xie W, Valenca L, Werner L, Yu Y, Kantoff AM, Sweeney CJ, Mucci LA, Pomerantz M, Lee GM, Kantoff PW (2015) Statin use at the time of initiation of androgen deprivation therapy and time to progression in patients with hormone-sensitive prostate cancer. JAMA Oncol:0829Google Scholar
  55. 55.
    Cai C, Chen S, Ng P, Bubley GJ, Nelson PS, Mostaghel EA, Marck B et al (2011) Intratumoral de novo steroid synthesis activates androgen receptor in castration-resistant prostate cancer and is upregulated by treatment with CYP17A1 inhibitors. Cancer Res 71:6503–6513PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    de Bono JS, Logothetis CJ, Molina A, Fizazi K, North S, Chu L, Chi KN, Jones RJ, Goodman OB Jr, Saad F, Staffurth JN, Mainwaring P, Harland S et al (2011) Abiraterone and increased survival in metastatic prostate cancer. N Engl J Med 364:1995–2005PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Scher HI, Fizazi K, Saad F, Taplin ME, Sternberg CN, Miller K, de Wit R, Mulders P, Chi KN, Shore ND, Armstrong AJ, Flaig TW, Fléchon A et al (2012) Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med 367:1187–1197PubMedCrossRefGoogle Scholar
  58. 58.
    Nieschlag E, Behre HM, Nieschlag S. Andrology (2001) Male reproductive health and dysfunction, 3rd ed. SpringerGoogle Scholar
  59. 59.
    Arianayagam R, Arianayagam M, McGrath S, Rashid P (2010) Androgen deficiency in the aging man. Aust Fam Physician 39:752–755PubMedGoogle Scholar
  60. 60.
    MacDonald PC. 1976. Origin of estrogen in men. In: Benign prostatic hyperplasia. DHEW Publication No. (NIH) 76–1113.Google Scholar
  61. 61.
    Harman SM, Metter EJ, Tobin JD, Pearson J, Blackman MR (2001) Longitudinal effects of aging on serum total and free testosterone levels in healthy men. Baltimore Longitudinal Study of Aging. J Clin Endocrin Metab 86:724–731CrossRefGoogle Scholar
  62. 62.
    Chen W, Hunt DM, Lu H, Hunt RC (1999) Expression of antioxidant protective proteins in the rat retina during prenatal and postnatal development. Invest Ophthalmol Vis Sci 40:744–751PubMedGoogle Scholar
  63. 63.
    Zirkin BR, Chen H (2000) Regulation of Leydig cell steroidogenic function during aging. Biol Reprod 63:977–981PubMedCrossRefGoogle Scholar
  64. 64.
    Stanworth RD, Hugh Jones T (2008) Testosterone for the aging male; current evidence and recommended practice. Clinical Interv Aging 3:25–44CrossRefGoogle Scholar
  65. 65.
    Vermeulen A, Rubens R, Verdonck L (1972) Testosterone secretion and metabolism in male senescence. J Clin Endocr 34:730PubMedCrossRefGoogle Scholar
  66. 66.
    Vermeulon A (1995) Declining androgens with age: an overview. In: Vermeulon A, Oddens BJ, International Health Foundation (eds) Androgens and the aging male. Parthenon Publishing, New York, pp 3–14Google Scholar
  67. 67.
    Simon D, Nahoul K, Charles MA. 1996. Sex hormones, aging, ethnicity and insulin sensitivity in men: an overview of the TELECOM study. In Vermeulon A, Oddens BJ, International Health Foundation (Eds), Androgens and the aging male (pp 85–102), Parthenon Publishing: New York.Google Scholar
  68. 68.
    Navarro D, Acosta A, Robles E, Díaz C (2012) Hormone profile of menopausal women in Havana. MEDICC Rev 14(2)PubMedCrossRefGoogle Scholar
  69. 69.
    Liu PY, Iranmanesh A, Nehra AX, Keenan DM, Veldhuis JD (2005a) Mechanisms of hypoandrogenemia in healthy aging men. Endocrinol Metab Clin North Am 34:935–955PubMedCrossRefGoogle Scholar
  70. 70.
    Liu PY, Swerdloff RS, Veldhuis JD (2004) The rationale, efficacy and safety of androgen therapy in older men: future research and current practice recommendations. J Clin Endocrinol Metab 89:4789–4796PubMedCrossRefGoogle Scholar
  71. 71.
    Morley JE, Kaiser FE, Perry HM 3rd, Patrick P, Morley PM, Stauber PM, Vellas B, Baumgartner RN, Garry PJ. 1997. Longitudinal changes in testosterone, luteinizing hormone, and follicle-stimulating hormone in healthy older men. Metab Clin Exp 46: 410–413.PubMedCrossRefGoogle Scholar
  72. 72.
    Gray A, Berlin JA, McKinlay JB, Longcope C (1991) An examination of research design effects on the association of testosterone and male aging: results of a meta-analysis. J Clin Epidemiol 44:671–684PubMedCrossRefGoogle Scholar
  73. 73.
    Hamburger C, Halvorsen K, Pedersen J (1945) Assay of Androgenic substances in the urine of normal men and women. Acta Pharmacol Toxicol 1:129–140CrossRefGoogle Scholar
  74. 74.
    Veldhuis JD (2008) Aging and hormones of the hypothalamo-pituitary axis: gonadotropic axis in men and somatotropic axes in men and women. Ageing Res Rev 7:189–208PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Dahlman-Wright K, Cavailles V, Fuqua SA et al (2006) International Union of Pharmacology. LXIV. Estrogen receptors. Pharmacol Rev 58(4):773–781PubMedCrossRefGoogle Scholar
  76. 76.
    Katzenellenbogen BS, Montano MM, Le Goff P et al (1995) Antiestrogens: mechanisms and actions in target cells. J Steroid Biochem Mol Biol 53:387–393PubMedCrossRefGoogle Scholar
  77. 77.
    Heldring N, Pike A, Andersson S et al (2007) Estrogen receptors: how do they signal and what are their targets. Physiol Rev 87(3):905–931PubMedCrossRefGoogle Scholar
  78. 78.
    Mendelsohn ME, Karas RH (2010) Rapid progress for non-nuclear estrogen receptor signaling. J Clin Investig 120:2277–2279PubMedCrossRefGoogle Scholar
  79. 79.
    Thornton MJ (2013) Estrogens and aging skin. Dermato-endocrinology 5:264–270PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Vina J, Sastre J, Pallardo FV, Gambini J, Borras C (2006) Role of mitochondrial oxidative stress to explain the different longevity between genders: protective effect of estrogens. Free Radic Res 40:1359–1365PubMedCrossRefGoogle Scholar
  81. 81.
    Phillips SK, Rook KM, Siddle NC, Bruce SA, Woledge RC (1993) Muscle weakness in women occurs at an earlier age than in men, but strength is preserved by hormone replacement therapy. Clin Sci (Lond) 84:95–98CrossRefGoogle Scholar
  82. 82.
    Greeves JP, Cable NT, Reilly T, Kingsland C (1999) Changes in muscle strength in women following the menopause: a longitudinal assessment of the efficacy of hormone replacement therapy. Clin Sci (Lond) 97(1):79–84CrossRefGoogle Scholar
  83. 83.
    Naftolin F, Ryan KJ, Petro Z (1971) Aromatization of androstenedione by the diencephalon. J Clin Endocrinol Metab 33(2):368–370PubMedCrossRefGoogle Scholar
  84. 84.
    Abney TO (1999) The potential roles of estrogens in regulating Leydig cell development and function: a review. Steroids 64(9):610–617PubMedCrossRefGoogle Scholar
  85. 85.
    Campion JM, Maricic MJ (2003) Osteoporosis in men. Am Fam Physician 67:1521–1526PubMedGoogle Scholar
  86. 86.
    Riggs BL, Khosla S, Melton LJ 3rd. 1998. A unitary model for involutional osteoporosis: estrogen deficiency causes both type I and type II osteoporosis in postmenopausal women and contributes to bone loss in aging men. J Bone Miner Res 13(5):763-773.PubMedCrossRefGoogle Scholar
  87. 87.
    Novotny R, Davis J (2015) Growth in bone and body size among Asian and white girls in the Female Adolescent Maturation (FAM) study. Arch Osteoporos 10:31PubMedCrossRefGoogle Scholar
  88. 88.
    Albright F, Smith PH, Richardson AM (1941) postmenopausal osteoporosis. JAMA 116:2465–2474CrossRefGoogle Scholar
  89. 89.
    Lindsay R, Aitkin JM, Anderson JB, Hart DM, MacDonald EB, Clarke AC (1976) Long-term prevention of postmenopausal osteoporosis by oestrogen. Lanceti:1038–1040Google Scholar
  90. 90.
    Genant HK, Cann CE, Ettinger B, Gordan GS (1982) Quantitative computed tomography of vertebral spongiosa: A sensitive method for detecting early bone loss after oophorectomy. Ann Intern Med 97:699–705PubMedCrossRefGoogle Scholar
  91. 91.
    Riggs BL, Melton LJ (1986) Medical progress series: Involutional osteoporosis. N Engl J Med 314:1676–1686PubMedCrossRefGoogle Scholar
  92. 92.
    Eriksen EF, Colvard DS, Berg NJ, Graham ML, Mann KG, Spelsberg TC, Riggs BL (1988) Evidence of estrogen receptors in normal human osteoblast-like cells. Science 241:84–86PubMedCrossRefGoogle Scholar
  93. 93.
    Komm BS, Terpening CM, Benz DJ, Graeme KA, O’Malley BW, Haussler MR (1988) Estrogen binding receptor mRNA, and biologic response in osteoblast-like osteosarcoma cells. Science 241:81–84PubMedCrossRefGoogle Scholar
  94. 94.
    Oursler MJ, Osdoby P, Pyfferoen J, Riggs BL, Spelsberg TC (1991) Avian osteoclasts as estrogen target cells. Proc Natl Acad Sci USA 88:6613–6617PubMedCrossRefGoogle Scholar
  95. 95.
    Cosman F, Shen V, Xie F, Seibel M, Ratcliffe A, Lindsay R (1993) Estrogen protection against bone resorbing effects of parathyroid hormone infusion. Ann Intern Med 118:337–343PubMedCrossRefGoogle Scholar
  96. 96.
    Heaney RP, Recker RR, Saville PD (1978) Menopausal changes in calcium balance performance. J Lab Clin Med 92:953–963PubMedGoogle Scholar
  97. 97.
    McKane WR, Khosla S, Burritt MF, Kao PC, Wilson DM, Ory SJ, Riggs BL (1995) Mechanism of renal calcium conservation with estrogen replacement therapy in women in early post- menopause-A clinical research center study. J Clin Endocrinol Metab 80:3458–3464PubMedGoogle Scholar
  98. 98.
    Gennari C, Agnusdei D, Nardi P, Civitelli R (1990) Estrogen preserves a normal intestinal responsiveness to 1,25-dihydroxyvitamin D3 in oophorectomized women. J Clin Endocrinol Metab 71:1288–1293PubMedCrossRefGoogle Scholar
  99. 99.
    Heshmati HM, Khosla S, Robins SP, Geller N, McAlister CA, Riggs BL (2002) Endogenous residual estrogen levels determine bone resorption even in late post-menopausal women. J Bone Miner Res 17:172–178PubMedCrossRefGoogle Scholar
  100. 100.
    Garnero P, Sornay-Rendu E, Chapuy M, Delmas PD (1996) Increased bone turnover in late postmenopausal women is a major determinant of osteoporosis. J Bone Miner Res 11:337–349CrossRefGoogle Scholar
  101. 101.
    Lips P, Courpron P, Meunier PJ (1978) Mean wall thickness of trabecular bone packets in the human iliac crest: changes with age. Calcif Tissue Res 26:13–17PubMedCrossRefGoogle Scholar
  102. 102.
    Marie PJ, de Vernejoul MC (1993) Proliferation of bone surface-derived osteoblastic cells and control of bone formation. Bone 14:463–468PubMedCrossRefGoogle Scholar
  103. 103.
    Vermeulen A (1987) Nyctohemeral growth hormone profiles in young and aged men: correlation with somatomedin-C levels. J Clin Endocrinol Metab 64:884–888PubMedCrossRefGoogle Scholar
  104. 104.
    Landin-Wilhelmsen K, Wilhelmsen L, Lappas G, Rosen T, Lindstedt G, Lundberg P, Bengtsson B (1994) Serum insulin-like growth factor I in a random population sample of men and women: relation to age, sex, smoking habits, coffee consumption and physical activity, blood pressure and concentrations of plasma lipids, fibrinogen, parathyroid hormone and osteocalcin. Clin Endocrinol 41:351–357CrossRefGoogle Scholar
  105. 105.
    Ernst M, Heath JK, Rodan GA (1989) Estradiol effects on proliferation, messenger ribonucleic acid for collagen and insulin-like growth factor-I, and parathyroid hormone-stimulated adenylate cyclase activity in osteoblastic cells from calvariae and long bones. Endocrinology 125:825–833PubMedCrossRefGoogle Scholar
  106. 106.
    Murphy S, Khaw KT, Cassidy A et al (1993) Sex hormones and bone mineral density in elderly men. Bone Miner 20:133–140PubMedCrossRefGoogle Scholar
  107. 107.
    Rucker D, Ezzat S, Diamandi A et al (2004) IGF-I and testosterone levels as predictors of bone mineral density in healthy, community-dwelling men. Clin Endocrinol 60:491–499CrossRefGoogle Scholar
  108. 108.
    Lorentzon M, Swanson C, Andersson N et al (2005) Free testosterone is a positive, whereas free estradiol is a negative, predictor of cortical bone size in young Swedish men: the GOOD study. J Bone Miner Res 20:1334–1341PubMedCrossRefGoogle Scholar
  109. 109.
    Jackson JA, Riggs MW, Spiekerman AM (1992) Testosterone deficiency as a risk factor for hip fractures in men: a case-control study. Am J Med Sci 304:4–8PubMedCrossRefGoogle Scholar
  110. 110.
    Khosla S, Melton LJ 3rd, Atkinson EJ, et al. 2001. Relationship of serum sex steroid levels to longitudinal changes in bone density in young versus elderly men. J Clin Endocrinol Metab 86: 3555–3561.CrossRefGoogle Scholar
  111. 111.
    Smith EP, Boyd J, Frank GR et al (1994) Estrogen resistance caused by a mutation in the estrogen-receptor gene in a man. N Engl J Med 331:1056–1061PubMedCrossRefGoogle Scholar
  112. 112.
    Carani C, Qin K, Simoni M et al (1997) Effect of testosterone and estradiol in a man with aromatase deficiency. N Engl J Med 337:91–95PubMedCrossRefGoogle Scholar
  113. 113.
    Candow DG, Chilibeck PD (2005) Differences in size, strength, and power of upper and lower body muscle groups in young and older men. J Gerontol A Biol Sci Med Sci 60:148–156PubMedCrossRefGoogle Scholar
  114. 114.
    Rosenberg IH (1997) Sarcopenia: origins and clinical relevance. J Nutr 127(suppl):990–991CrossRefGoogle Scholar
  115. 115.
    Lexell J (1995) Human aging, muscle mass, and fiber type composition. J Gerontol A Biol Sci Med Sci 50:11–16PubMedGoogle Scholar
  116. 116.
    Goodpaster BH, Park SW, Harris TB et al (2006) The loss of skeletal muscle strength, mass, and quality in older adults: the health, aging and body composition study. J Gerontol A Biol Sci Med Sci 61:1059–1064PubMedCrossRefGoogle Scholar
  117. 117.
    Baum K, Hildebrandt U, Edel K et al (2009) Comparison of skeletal muscle strength between cardiac patients and age-matched healthy controls. Int J Med Sci 6:184–191PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Kalyani RR, Corriere M, Ferrucci L (2014) Age-related and disease-related muscle loss: the effect of diabetes, obesity, and other diseases. Lancet Diabetes Endocrinol 2:819–829PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Maggio M, Ceda GP, Lauretani F et al (2011) Gonadal status and physical performance in older men. Aging Male 14:42–47PubMedCrossRefGoogle Scholar
  120. 120.
    Boxer RS, Kenny AM, Dowsett R, Taxel P (2005) The effect of 6 months of androgen deprivation therapy on muscle and fat mass in older men with localized prostate cancer. Aging Male 8:207–212PubMedCrossRefGoogle Scholar
  121. 121.
    Bhasin S, Storer TW, Berman N et al (1996) The effects of supraphysiologic doses of testosterone on muscle size and strength in normal men. N Engl J Med 335:1–7PubMedCrossRefGoogle Scholar
  122. 122.
    Schroeder ET, He J, Yarasheski KE et al (2012) Value of measuring muscle performance to assess changes in lean mass with testosterone and growth hormone supplementation. Eur J Appl Physiol 112:1123–1131PubMedCrossRefGoogle Scholar
  123. 123.
    Aloia JF, McGowan DM, Vaswani AN, Ross P, Cohn SH (1991) Relationship of menopause to skeletal and muscle mass. Am J Clin Nutr 53:1378–1383PubMedCrossRefGoogle Scholar
  124. 124.
    Rolland YM, Perry HM III, Patrick P, Banks WA, Morley JE (2007) Loss of appendicular muscle mass and loss of muscle strength in young postmenopausal women. J Gerontol A Biol Sci Med Sci 62:330–335CrossRefGoogle Scholar
  125. 125.
    Signorelli SS, Neri S, Sciacchitano S, Pino LD, Costa MP, Marchese G et al (2006) Behaviour of some indicators of oxidative stress in postmenopausal and fertile women. Maturitas 53:77–82PubMedCrossRefGoogle Scholar
  126. 126.
    Baumgartner RN, Waters DL, Gallagher D, Morley JE, Garry PJ (1999) Predictors of skeletal muscle mass in elderly men and women. Mech Ageing Dev 107:123–136PubMedCrossRefGoogle Scholar
  127. 127.
    Wolfe RR, Miller SL, Miller KB (2008) Optimal protein intake in the elderly. Clin Nutr 27:675–684PubMedCrossRefGoogle Scholar
  128. 128.
    Lord C, Chaput JP, Aubertin-Leheudre M, Labonte M, Dionne IJ (2007) Dietary animal protein intake: association with muscle mass index in older women. J Nutr Health Aging 11:383–387PubMedGoogle Scholar
  129. 129.
    Hiona A, Leeuwenburgh C (2008) The role of mitochondrial DNA mutations in aging and sarcopenia: implications for the mitochondrial vicious cycle theory of aging. Exp Gerontol 43:24–33PubMedCrossRefGoogle Scholar
  130. 130.
    DeLuca HF (2004) Overview of general physiologic features and functions of vitamin D. Am J Clin Nutr 80(6 Suppl):1689S–1696SPubMedCrossRefGoogle Scholar
  131. 131.
    Holick MF. 1999. Vitamin D: photobiology, metabolism, mechanism of action, and clinical applications. In: Favus MJ (ed) Primer on the metabolic bone diseases and disorders of mineral metabolism. Lippincott Williams & Wilkins, Philadelphia, pp 92–98Google Scholar
  132. 132.
    Zanello SB, Collins ED, Marinissen MJ, Norman AW, Boland RL (1997) Vitamin D receptor expression in chicken muscle tissue and cultured myoblasts. Horm Metab Res 29:231–236PubMedCrossRefGoogle Scholar
  133. 133.
    Bischoff HA, Borchers M, Gudat F, Duermueller U, Theiler R, Stahelin HB et al (2001) In situ detection of 1,25-dihydroxyvitamin D3 receptor in human skeletal muscle tissue. Histochem J 33:19–24PubMedCrossRefGoogle Scholar
  134. 134.
    Calmels P, Vico L, Alexandre C, Minaire P (1995) Cross-sectional study of muscle strength and bone mineral density in a population of 106 women between the ages of 44 and 87 years: relationship with age and menopause. Eur J Appl Physiol Occup Physiol 70:180–186PubMedCrossRefGoogle Scholar
  135. 135.
    Sitnick M, Foley AM, Brown M, Spangenburg EE (2006) Ovariectomy prevents the recovery of atrophied gastrocnemius skeletal muscle mass. J Appl Physiol 100:286–293PubMedCrossRefGoogle Scholar
  136. 136.
    Wiik A, Ekman M, Johansson O, Jansson E, Esbjornsson M (2009) Expression of both oestrogen receptor alpha and beta in human skeletal muscle tissue. Histochem Cell Biol 131:181–189PubMedCrossRefGoogle Scholar
  137. 137.
    Ciana P, Raviscioni M, Mussi P, Vegeto E, Que I, Parker MG et al (2003) In vivo imaging of transcriptionally active estrogen receptors. Nat Med 9:82–86PubMedCrossRefGoogle Scholar
  138. 138.
    Murphy LJ, Ghahary A (1990) Uterine insulin-like growth factor-1: regulation of expression and its role in estrogen-induced uterine proliferation. Endocr Rev 11:443–453PubMedCrossRefGoogle Scholar
  139. 139.
    MacKay JD, Mensah GA (2004) The atlas of heart disease and stroke. WHO, GenevaGoogle Scholar
  140. 140.
    Jones RD, Pugh PJ, Hall J et al (2003) Altered circulating hormone levels, endothelial function and vascular reactivity in the testicular feminised mouse. Eur J Endocrinol 148:111–120PubMedCrossRefGoogle Scholar
  141. 141.
    Jones RD, Nettleship JE, Kapoor D et al (2005) Testosterone and atherosclerosis in aging men: purported association and clinical implications. Am J Cardiovasc Drugs 5:141–154PubMedCrossRefGoogle Scholar
  142. 142.
    Hak AE, Witteman JC, de Jong FH et al (2002) Low levels of endogenous androgens increase the risk of atherosclerosis in elderly men: the Rotterdam study. J Clin Endocrinol Metab 87:3632–3639PubMedCrossRefGoogle Scholar
  143. 143.
    Haffner SM, Mykkanen L, Valdez RA et al (1993) Relationship of sex hormones to lipids and lipoproteins in nondiabetic men. J Clin Endocrinol Metab 77:1610–1615PubMedGoogle Scholar
  144. 144.
    Van Pottelbergh I, Braeckman L, De Bacquer D et al (2003) Differential contribution of testosterone and estradiol in the determination of cholesterol and lipoprotein profile in healthy middle-aged men. Atherosclerosis 166:95–102PubMedCrossRefGoogle Scholar
  145. 145.
    Lichtenstein MJ, Yarnell JW, Elwood PC et al (1987) Sex hormones, insulin, lipids, and prevalent ischemic heart disease. Am J Epidemiol 126:647–657PubMedCrossRefGoogle Scholar
  146. 146.
    Khaw KT, Barrett-Connor E (1988) Blood pressure and endogenous testosterone in men: an inverse relationship. J Hypertens 6:329–332PubMedCrossRefGoogle Scholar
  147. 147.
    Schirmer SH, Buschmann IR, Jost MM, Hoefer IE, Grundmann S, Andert JP, Ulusans S, Bode C, Piek JJ, van Royen N (2004) Differential effects of MCP-1 and leptin on collateral flow and arteriogenesis. Cardiovasc Res 64:356–364PubMedCrossRefGoogle Scholar
  148. 148.
    Kontoleon PE, Anastasiou-Nana MI, Papapetrou PD et al (2003) Hormonal profile in patients with congestive heart failure. Int J Cardiol 87:179–183PubMedCrossRefGoogle Scholar
  149. 149.
    Tappler B, Katz M (1979) Pituitary-gonadal dysfunction in low-output cardiac failure. Clin Endocrinol 10:219–226CrossRefGoogle Scholar
  150. 150.
    Noirhomme P, Jacquet L, Underwood M et al (1999) The effect of chronic mechanical circulatory support on neuroendocrine activation in patients with end-stage heart failure. Eur J Cardiothorac Surg 16:63–67PubMedCrossRefGoogle Scholar
  151. 151.
    Ahmed SA, Penhale WJ, Talal N (1985) Sex hormones, immune responses, and autoimmune diseases. Mechanisms of sex hormone action. Am J Pathol 121:531–551Google Scholar
  152. 152.
    Rossouw JE, Anderson GL, Prentice RL, LaCroix AZ, Kooperberg C, Stefanick ML, Jackson RD, Beresford SA, Howard BV, Johnson KC, Kotchen JM, Ockene J (2002) Writing group for the women’s health initiative investigators. JAMA 288:321–333PubMedCrossRefGoogle Scholar
  153. 153.
    Hodis HN, Mack WJ (2002) Atherosclerosis imaging methods: assessing cardiovascular disease and evaluating the role of estrogen in the prevention of atherosclerosis. Am J Cardiol 89:19E–27E. discussion 27EPubMedCrossRefGoogle Scholar
  154. 154.
    Colditz GA, Willett WC, Stampfer MJ, Rosner B, Speizer FE, Hennekens CH (1987) A prospective study of age at menarche, parity, age at first birth, and coronary heart disease in women. Am J Epidemiol 126:861–870PubMedCrossRefGoogle Scholar
  155. 155.
    Hulley S, Grady D, Bush T, Furberg C, Herrington D, Riggs B, Vittinghoff E (1998) Randomized trial of estrogen plus progestin for secondary prevention of coronary heart disease in postmenopausal women. Heart and Estrogen/progestin Replacement Study (HERS) Research Group. JAMA 280:605–613PubMedCrossRefGoogle Scholar
  156. 156.
    Genazzani AR, Petraglia F, Purdy RH (1996) The brain: source and target for sex steroid hormones. The Parthenon Publishing Group, ItalyGoogle Scholar
  157. 157.
    Hebert LE, Beckett LA, Scherr PA, Evans DA (2001) Annual incidence of Alzheimer disease in the United States projected to the years 2000 through 2050. Alzheimer Dis Assoc Disord 15:169–173PubMedCrossRefGoogle Scholar
  158. 158.
    Sloane PD, Zimmerman S, Suchindran C, Reed P, Wang L, Boustani M, Sudha S (2002) The public health impact of Alzheimer’s disease, 2000–2050: potential implication of treatment advances. Annu Rev Public Health 23:213–231PubMedCrossRefGoogle Scholar
  159. 159.
    Schumacher M, Akwa Y, Guennoun R, Robert F, Labombarda F, Desarnaud F, Robel P, De N, Baulieu EE (2000) Steroid synthesis and metabolism in the nervous system: trophic and protective effects. J Neurocytol 29:307–326PubMedCrossRefGoogle Scholar
  160. 160.
    Ott A, Breteler MM, van Harskamp F, Stijnen T, Hofman A (1998) Incidence and risk of dementia: the Rotterdam Study. Am J Epidemiol 147:574–580PubMedCrossRefGoogle Scholar
  161. 161.
    Amouyel P (2002) Genetic susceptibility to aging-associated diseases. C R Biol 325:741–745PubMedCrossRefGoogle Scholar
  162. 162.
    Schumacher M, Weill-Engerer S, Liere P, Robert F, Franklin RJM, GarciaSegura LM, Lambert JJ, Mayo W, Melcangi RC, Parducz A et al (2003) Steroid hormones and neurosteroids in normal and pathological aging of the nervous system. Prog Neurobiol 71:3–29PubMedCrossRefGoogle Scholar
  163. 163.
    Baulieu EE (1997) Neurosteroids: of the nervous system, by the nervous system, for the nervous system. Recent Prog Horm Res 52:1–32PubMedGoogle Scholar
  164. 164.
    Kruijver FP, Fernandez-Guasti A, Fodor M, Kraan EM, Swaab DF (2001) Sex differences in androgen receptors of the human mammillary bodies are related to endocrine status rather than to sexual orientation or transsexuality. J Clin Endocrinol Metab 86:818–827PubMedCrossRefGoogle Scholar
  165. 165.
    Beyer C (1999) Estrogen and the developing brain. Anat Embryol 199:379–390PubMedCrossRefGoogle Scholar
  166. 166.
    Sherwin BB (1997) Estrogen effects on cognition in menopausal women. Neurology 48:S21–S26PubMedCrossRefGoogle Scholar
  167. 167.
    Alonso-Soleis R, Abreu P, Leopez-Coviella I, Hernandez G, Fajardo N (1996) Gonadal steroid modulation of neuroendocrine transduction: a transynaptic view. Cell Mol Neurobiol (3):357–382Google Scholar
  168. 168.
    Keefe D, Garcia-Segura LM, Naftolin F (1994) New insights into estrogen action on the brain. Neurobiol Aging 15:495–497PubMedCrossRefGoogle Scholar
  169. 169.
    Couse JF, Lindzey J, Grandien K, Gustafsson JA, Korach KS (1997) Tissue distribution and quantitative analysis of estrogen receptor-alpha (ERalpha) and estrogen receptor-beta (ERbeta) messenger ribonucleic acid in the wild-type and ERalpha-knockout mouse. Endocrinology 138:4613–4621PubMedCrossRefGoogle Scholar
  170. 170.
    Gruber CJ, Tschugguel W, Schneeberger C, Huber JC (2002) Production and actions of estrogens. N Engl J Med 346:340–352PubMedCrossRefGoogle Scholar
  171. 171.
    Falkenstein E, Wehling M (2000) Nongenomically initiated steroid actions. Eur J Clin Invest 30(Suppl 3):51–54PubMedCrossRefGoogle Scholar
  172. 172.
    Kuppers E, Ivanova T, Karolczak M, Lazarov N, Fohr K, Beyer C (2001) Classical and nonclassical estrogen action in the developing midbrain. Horm Behav 40:196–202PubMedCrossRefGoogle Scholar
  173. 173.
    Phillips SM, Sherwin BB (1992a) Effects of estrogen on memory function in surgically menopausal women. Psychoneuroendocrinology 17:485–495PubMedCrossRefGoogle Scholar
  174. 174.
    Simerly RB, McCall LD, Watson SJ (1988) Distribution of opioid peptides in the preoptic region: immunohistochemical evidence for a steroidsensitive enkephalin sexual dimorphism. J Comp Neurol 276:442–459PubMedCrossRefGoogle Scholar
  175. 175.
    Craft RM, Mogil JS, Aloisi AM (2004) Sex differences in pain and analgesia: the role of gonadal hormones. Eur J Pain 8:397–411PubMedCrossRefGoogle Scholar
  176. 176.
    Genazzani AR, Stomati M, Bernardi F, Luisi S, Casarosa E, Puccetti S, Genazzani AD, Palumbo M, Luisi M (2004) Conjugated equine estrogens reverse the effects of aging on central and peripheral allopregnanolone and beta-endorphin levels in female rats. Fertil Steril 81:757–766PubMedCrossRefGoogle Scholar
  177. 177.
    Genazzani AR, Pluchino N, Luisi S, Luisi M (2007) Estrogen, cognition and female ageing. Hum Reprod Update 13:175–187PubMedCrossRefGoogle Scholar
  178. 178.
    Genazzani AR, Petraglia F, Facchinetti F et al (1984) Increase of proopiomelanocortin-related peptides during subjective menopausal flushes. Am J Obstet Gynecol 149:775–779PubMedCrossRefGoogle Scholar
  179. 179.
    Linghtman SL, Jacobs HS, Maguire AK (1981) Climateric flushing: clinical and endocrine response to infusion of naloxone. Br J Obstet Gynecol 88:919–924CrossRefGoogle Scholar
  180. 180.
    Adler MW (1980) Minireview: opioid peptides. Life Sci 26:496–510CrossRefGoogle Scholar
  181. 181.
    Reiter RJ (1991) Pineal melatonin: cell biology of its synthesis and of its physiological interactions. Endocr Rev 12:151–180PubMedCrossRefGoogle Scholar
  182. 182.
    Reiter RJ (1998) Oxidative damage in the central nervous system: protection by melatonin. Prog Neurobiol 56:359–384PubMedCrossRefGoogle Scholar
  183. 183.
    Morioka N, Okatani Y, Wakatsuki A (1999) Melatonin protects against age-related DNA damage in the brains of female senescence-accelerated mice. J Pineal Res 27:202–209PubMedCrossRefGoogle Scholar
  184. 184.
    Lewy AJ, Sack RL (1997) Exogenous melatonin’s phase-shifting effects on the endogenous melatonin profile in sighted humans: a brief review and critique of the literature. J Biol Rhythms 12:588–594PubMedCrossRefGoogle Scholar
  185. 185.
    Zhdanova IV, Wurtman RJ (1997) Efficacy of melatonin as a sleep-promoting agent. J Biol Rhythms 12:644–650PubMedCrossRefGoogle Scholar
  186. 186.
    Birau N, Peterssen U, Meyer C, Gottschalk J (1981) Hypotensive effect of melatonin in essential hypertension. IRSC Med Sci 9:906Google Scholar
  187. 187.
    Okatani Y, Morioka N, Wakatsuki A (2000) Changes in nocturnal melatonin secretion in peri-menopausal women. Correlation with endogenous estrogen concentrations. J Pineal Res 28:111–118PubMedCrossRefGoogle Scholar
  188. 188.
    Alonso R, Abreu P, Fajardo N (1995) Ovarian hormones regulate α1- and β-adrenoceptor interactions in female rat pinealocytes. Neuroreport 6:345–348PubMedCrossRefGoogle Scholar
  189. 189.
    Ponholzer A, Temml C, Mock K et al (2005) Prevalence and risk factors for erectile dysfunction in 2869 men using a validated questionnaire. Eur Urol 47:80–85; discussion 85–86.PubMedCrossRefGoogle Scholar
  190. 190.
    Shabsigh R, Anastasiadis AG (2003) Erectile dysfunction. Annu Rev Med 54:153–168PubMedCrossRefGoogle Scholar
  191. 191.
    Kratzik CW, Schatzl G, Lunglmayr G et al (2005) The impact of age, body mass index and testosterone on erectile dysfunction. J Urol 174:240–243PubMedCrossRefGoogle Scholar
  192. 192.
    Gray PB, Singh AB, Woodhouse LJ et al (2005) Dose-dependent effects of testosterone on sexual function, mood, and visuospatial cognition in older men. J Clin Endocrinol Metab 90:3838–3846PubMedCrossRefGoogle Scholar
  193. 193.
    Aversa A, Isidori AM, Spera G et al (2003) Androgens improve cavernous vasodilation and response to sildenafil in patients with erectile dysfunction. Clin Endocrinol (Oxf) 58:632–638CrossRefGoogle Scholar
  194. 194.
    Shabsigh R, Kaufman JM, Steidle C et al (2004) Randomized study of testosterone gel as adjunctive therapy to sildenafil in hypogonadal men with erectile dysfunction who do not respond to sildenafil alone. J Urol 172:658–663PubMedCrossRefGoogle Scholar
  195. 195.
    Inoue T, Miki Y, Abe K, Hatori M, Hosaka M, Kariya Y et al (2011) The role of estrogen-metabolizing enzymes and estrogen receptors in human epidermis. Mol Cell Endocrinol 344:35–40PubMedCrossRefGoogle Scholar
  196. 196.
    Brincat M, Versi E, Moniz CF, Magos A, de Trafford J, Studd JW (1987) Skin collagen changes in postmenopausal women receiving different regimens of estrogen therapy. Obstet Gynecol 70:123–127Google Scholar
  197. 197.
    Brincat M, Moniz CJ, Studd JW, Darby A, Magos A, Emburey G et al (1985) Long-term effects of the menopause and sex hormones on skin thickness. Br J Obstet Gynaecol 92:256–259PubMedCrossRefGoogle Scholar
  198. 198.
    Affinito P, Palomba S, Sorrentino C, Di Carlo C, Bifulco G, Arienzo MP et al (1999) Effects of postmenopausal hypoestrogenism on skin collagen. Maturitas 33:239–247PubMedCrossRefGoogle Scholar
  199. 199.
    Shah MG, Maibach HI (2001) Estrogen and skin. An overview. Am J Clin Dermatol 2:143–150PubMedCrossRefGoogle Scholar
  200. 200.
    Emmerson E, Hardman MJ (2012) The role of estrogen deficiency in skin ageing and wound healing. Biogerontology 13:3–20PubMedCrossRefGoogle Scholar
  201. 201.
    Ashcroft GS, Dodsworth J, van Boxtel E, Tarnuzzer RW, Horan MA, Schultz GS et al (1997) Estrogen accelerates cutaneous wound healing associated with an increase in TGF-beta1 levels. Nat Med 3:1209–1215PubMedCrossRefGoogle Scholar
  202. 202.
    Lobo RA (2017) Hormone-replacement therapy: current thinking. Nat Rev Endocrinol 13:220–231PubMedCrossRefGoogle Scholar
  203. 203.
    Siregar MFG (2015) Hormonal therapy for aging process in women. Int J Adv Med 2:83–87CrossRefGoogle Scholar
  204. 204.
    Schwartz E, Holtorf K (2011) Hormone replacement therapy in the geriatric patient: current state of the evidence and questions for the future. Estrogen, progesterone, testosterone, and thyroid hormone augmentation in geriatric clinical practice: part 1. Clin Geriatr Med (4):542–559PubMedCrossRefGoogle Scholar
  205. 205.
    López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153:1194–1217PubMedPubMedCentralCrossRefGoogle Scholar
  206. 206.
    Hulbert AJ, Pamplona R, Buffenstein R, Buttemer WA (2007) Life and death: metabolic rate, membrane composition, and life span of animals. Physiol Rev 87:1175–1213PubMedCrossRefGoogle Scholar
  207. 207.
    Wallace DC (2005) A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 39:359–407PubMedPubMedCentralCrossRefGoogle Scholar
  208. 208.
    Beckman KB, Ames BN (1998) Free radical theory of aging matures. Physiol Rev 78:547–581CrossRefGoogle Scholar
  209. 209.
    Bokov A, Chaudhuri A, Richardson A (2004) The role of oxidative damage and stress in aging. Mech Ageing Devel 125:811–826CrossRefGoogle Scholar
  210. 210.
    Hanukoglu I (2006) Antioxidant protective mechanisms against reactive oxygen species (ROS) generated by mitochondrial P450 systems in steroidogenic cells. Drug Metab Rev 38:171–196PubMedCrossRefGoogle Scholar
  211. 211.
    Nebert D, Dalton TP (2006) The role of cytochrome P450 enzymes in endogenous signaling pathways and environmental carcinogenesis. Nat Rev Cancer 6:947–960PubMedCrossRefGoogle Scholar
  212. 212.
    Jackson MJ, Papa S, Bolaños J et al (2002) Antioxidants, reactive oxygen and nitrogen species, gene induction and mitochondrial function. Mol Aspects Med 23:209–285PubMedCrossRefGoogle Scholar
  213. 213.
    Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247PubMedCrossRefGoogle Scholar
  214. 214.
    Stowe DF, Camara AKS (2008) Mitochondrial reactive oxygen species production in excitable cells: Modulators of mitochondrial and cell function. Antioxid Redox Signal 11:1373–1414CrossRefGoogle Scholar
  215. 215.
    Hornsby PJ (1989) Steroid and xenobiotic effects on the adrenal cortex: mediation by oxidative and other mechanisms. Free Radic Biol Med 6:103–115PubMedCrossRefGoogle Scholar
  216. 216.
    Azhar S, Cao L, Reaven E (1995) Alteration of the adrenal antioxidant defense system during aging in rats. J Clin Invest 96:141424CrossRefGoogle Scholar
  217. 217.
    Cao L, Leers-Sucheta S, Azhar S (2004) Aging alters the functional expression of enzymatic and non-enzymatic anti-oxidant defense systems in testicular rat Leydig cells. J Steroid Biochem Mol Biol 88:61–67PubMedCrossRefGoogle Scholar
  218. 218.
    Vina J, Borras C, Gambini J, Sastre J, Pallardo FV (2005) Why females live longer than males: control of longevity by sex hormones. Sci Aging Knowl Environ (23):pe17PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Gargi Bagchi
    • 1
  • Amit K. Dash
    • 2
  • Sanjay Kumar
    • 2
    • 3
  • Shoulei Jiang
    • 4
  • Soon C. Ahn
    • 5
  • Bandana Chatterjee
    • 4
    Email author
  • Rakesh K. Tyagi
    • 2
    Email author
  1. 1.Amity Institute of BiotechnologyAmity University HaryanaManesar, GurgaonIndia
  2. 2.Special Centre for Molecular MedicineJawaharlal Nehru UniversityNew DelhiIndia
  3. 3.Central Research Station, Netaji Subhash Chandra Bose Subharti Medical CollegeSwami Vivekanand Subharti UniversityMeerutIndia
  4. 4.Department of Molecular Medicine, School of MedicineUniversity of Texas Health San Antonio & South Texas Veterans Health Care SystemSan AntonioUSA
  5. 5.Department of Microbiology and ImmunologyPusan National University School of MedicineYangsanRepublic of Korea

Personalised recommendations