Genetic Syndromes and Aging

  • Kailash Chandra Mangalhara
  • R. N. K. Bamezai


Involvement of a genetic component in the phenomenon of aging has been evidenced through tinkering with the gene(s) or genomic elements and manipulating life span of experimental organisms, which understandably is further influenced by a multitude of other nongenetic factors. Genomic studies related to aging till date on experimental model organisms have suggested the involvement of several pathways and candidates in the process. Studies in different syndromes or diseases associated with premature aging, involving either single or a set of genes, have added to the notion that life span has a genetic component and certain genetic diseases enhance the process of aging. Understanding the mechanism of these genetic components and the pathways suggests that the intervention at such levels would check the process of premature aging and enhance healthy life span.


Aging syndromes Hutchinson-Gilford syndrome Cockayne syndrome Down syndrome Werner syndrome Ataxia telangiectasia Bloom syndrome Fanconi anemia Xeroderma pigmentosum Rothmund-Thomson syndrome 


  1. 1.
    Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153(6):1194–1217PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Carrero D, Soria-Valles C, López-Otín C (2016) Hallmarks of progeroid syndromes: lessons from mice and reprogrammed cells. Dis Model Mech 9(7):719–735PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Longo VD, Shadel GS, Kaeberlein M, Kennedy B (2012) Replicative and chronological aging in Saccharomyces cerevisiae. Cell Metab 16(1):18–31PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    He Y, Jasper H (2014) Studying aging in Drosophila. Methods 68(1):129–133PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Tissenbaum AH (2015) Using for aging research. Invertebr Reprod Dev 59(Suppl 1):59–63PubMedCrossRefGoogle Scholar
  6. 6.
    Kenyon CJ (2010) The genetics of ageing. Nature 464(7288):504–512PubMedCrossRefGoogle Scholar
  7. 7.
    Tomás-Loba A, Flores I, Fernández-Marcos PJ, Cayuela ML, Maraver A et al (2008) Telomerase reverse transcriptase delays aging in cancer-resistant mice. Cell 135(4):609–622PubMedCrossRefGoogle Scholar
  8. 8.
    Moskalev AA, Aliper AM, Smit-McBride Z, Buzdin A, Zhavoronkov A (2014) Genetics and epigenetics of aging and longevity. Cell Cycle 13(7):1063–1077PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Hogg K, Western PS (2015) Refurbishing the germline epigenome: out with the old, in with the new. Semin Cell Dev Biol 45:104–113PubMedCrossRefGoogle Scholar
  10. 10.
    Pilling LC, Atkins JL, Bowman K, Jones SE, Tyrrell J et al (2016) Human longevity is influenced by many genetic variants: evidence from 75,000 UK Biobank participants. Aging (Albany NY) 8(3):547–560CrossRefGoogle Scholar
  11. 11.
    Seok J, Warren HS, Cuenca AG, Mindrinos MN, Baker HV et al (2013) Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci U S A 110(9):3507–3512PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Barzilai N, Shuldiner a R (2001) Searching for human longevity genes: the future history of gerontology in the post-genomic era. J Gerontol A Biol Sci Med Sci 56(2):M83–M87PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Newgard CB, Pessin JE (2014) Recent progress in metabolic signaling pathways regulating aging and life span. J Gerontol A Biol Sci Med Sci 69:S21–S27PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Freeman HC, Hugill A, Dear NT, Ashcroft FM, Cox RD (2006) Deletion of nicotinamide nucleotide transhydrogenase: a new quantitive trait locus accounting for glucose intolerance in C57BL/6J mice. Diabetes 55(7):2153–2156PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Toye AA, Lippiat JD, Proks P, Shimomura K, Bentley L et al (2005) A genetic and physiological study of impaired glucose homeostasis control in C57BL/6J mice. Diabetologia 48(4):675–686PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Kõks S, Dogan S, Tuna BG, González-Navarro H, Potter P, Vandenbroucke RE (2016) Mouse models of ageing and their relevance to disease. Mech Ageing Dev 160:41–53PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Barzilai N, Huffman D, Muzumdar R, Bartke A (2012) The critical role of metabolic pathways in aging. Diabetes 61(6):1315–1322PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Fontana L, Partridge L, Longo VD (2010) Extending healthy life span – from yeast to humans. Science 328:321–326. PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Herskind AM, McGue M, Holm NV, Sørensen TIA, Harvald B, Vaupel JW (1996) The heritability of human longevity: a population-based study of 2872 Danish twin pairs born 1870–1900. Hum Genet 97(3):319–323PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Mitchell BD, Hsueh WC, King TM, Pollin TI, Sorkin J et al (2001) Heritability of life span in the old order amish. Am J Med Genet 102(4):346–352PubMedCrossRefGoogle Scholar
  21. 21.
    Hjelmborg JB, Iachine I, Skytthe A, Vaupel JW, McGue M et al (2006) Genetic influence on human lifespan and longevity. Hum Genet 119(3):312–321CrossRefGoogle Scholar
  22. 22.
    Dutta A, Henley W, Robine JM, Langa KM, Wallace RB, Melzer D (2013) Longer lived parents: protective associations with cancer incidence and overall mortality. J Gerontol Ser A Biol Sci Med Sci 68(11):1409–1418CrossRefGoogle Scholar
  23. 23.
    Deelen J, Beekman M, Uh HW, Broer L (2014) Genome-wide association meta-analysis of human longevity identifies a novel locus conferring survival beyond 90 years of age. Hum Mol Genet 23:4420–4432PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Deelen J, Beekman M, Uh HW, Helmer Q, Kuningas M et al (2011) Genome-wide association study identifies a single major locus contributing to survival into old age; the APOE locus revisited. Aging Cell 10(4):686–698PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Lu F, Guan H, Gong B, Liu X, Zhu R et al (2014) Genetic variants in PVRL2-TOMM40-APOE region are associated with human longevity in a Han Chinese population. PLoS One 9(6):e99580PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Abbott MH, Murphy EA, Bolling DR, Abbey H (1974) The familial component in longevity. A study of offspring of nonagenarians. II. Preliminary analysis of the completed study. Johns Hopkins Med J 134(1):1–16PubMedGoogle Scholar
  27. 27.
    Philippe P (1978) Familial correlations of longevity: an isolate-based study. Am J Med Genet 2(2):121–129PubMedCrossRefGoogle Scholar
  28. 28.
    Mayer PJ (1991) Inheritance of longevity evinces no secular trend among members of six New England families born 1650–1874. Am J Hum Biol 3(1):49–58PubMedCrossRefGoogle Scholar
  29. 29.
    McGue JWV, N H, B H (1993) Longevity is moderately heritable in a sample of Danish twins born 1870–1880. J Gerontol 48(6):B237–B244PubMedCrossRefGoogle Scholar
  30. 30.
    Iachine IA, Holm NV, Harris JR, Begun AZ, Iachina MK et al (1998) How heritable is individual susceptibility to death? The results of an analysis of survival data on Danish, Swedish and Finnish twins. Twin Res 1(4):196–205PubMedCrossRefGoogle Scholar
  31. 31.
    Ljungquist B, Berg S, Lanke J, McClearn GE, Pedersen NL (1998) The effect of genetic factors for longevity: a comparison of identical and fraternal twins in the Swedish Twin Registry. J Gerontol A Biol Sci Med Sci 53(6):M441–M446PubMedCrossRefGoogle Scholar
  32. 32.
    Hirschfeld G, Berneburg M, Arnim C, Von IS, Ludolph AC, Scharffetter-kochanek K (2007) Progeroid syndromes: clinical symptoms and molecular causes of premature aging. Deutsches Arzteblatt-Koln 104(6):1–10Google Scholar
  33. 33.
    Martin GM (2005) Genetic modulation of senescent phenotypes in Homo sapiens. Cell 120(4):523–532PubMedCrossRefGoogle Scholar
  34. 34.
    Dyer CAE, Sinclair AJ (1998) The premature ageing syndromes: insights into the ageing process. Age Ageing 27(1):73–80PubMedCrossRefGoogle Scholar
  35. 35.
    Martin GM (1978) Genetic syndromes in man with potential relevance to the pathobiology of aging. Birth Defects Orig Artic Ser 14(1):5–39PubMedGoogle Scholar
  36. 36.
    Martin GM, Oshima J (2000) Lessons from human progeroid syndromes. Nature 408(6809):263–266PubMedCrossRefGoogle Scholar
  37. 37.
    Ullrich NJ, Gordon LB (2015) Hutchinson-Gilford progeria syndrome. Handb Clin Neurol 132:249–264PubMedCrossRefGoogle Scholar
  38. 38.
    Gruenbaum Y (2015) Nuclear organization. Annu Rev Biochem 84:61–64PubMedCrossRefGoogle Scholar
  39. 39.
    De Sandre-Giovannoli A, Bernard R, Cau P, Navarro C, Amiel J et al (2003) Lamin a truncation in Hutchinson-Gilford progeria. Science 300:2055PubMedCrossRefGoogle Scholar
  40. 40.
    Eriksson M, Brown WT, Gordon LB, Glynn MW, Singer J et al (2003) Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature 423(6937):293–298PubMedCrossRefGoogle Scholar
  41. 41.
    Scaffidi P, Misteli T (2008) Lamin A-dependent misregulation of adult stem cells associated with accelerated ageing. Nat Cell Biol 10(4):452–459PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Baker PB, Baba N, Boesel CP (1981) Cardiovascular abnormalities in progeria. Case report and review of the literature. Arch Pathol Lab Med 105(7):384–386PubMedGoogle Scholar
  43. 43.
    Gordon LB, Rothman FG, Lopez-Otin C, Misteli T (2014) Progeria: a paradigm for translational medicine. Cell 156(3):400–407PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Nissan X, Blondel S, Navarro C, Maury Y, Denis C et al (2012) Unique preservation of neural cells in Hutchinson-Gilford progeria syndrome is due to the expression of the neural-specific miR-9 microRNA. Cell Rep 2(1):1–9PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Scaffidi P, Misteli T (2006) Lamin A-dependent nuclear defects in human aging. Science 312(5776):1059–1063PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Petrini S, Borghi R, Oria VD, Restaldi F, Moreno S et al (2017) Aged induced pluripotent stem cell ( iPSCs ) as a new cellular model for studying premature aging. Aging (Albany NY) 9(5):1453–1466CrossRefGoogle Scholar
  47. 47.
    Zebrower M, Kieras FJ, Brown WT (1986) Urinary hyaluronic acid elevation in Hutchinson-Gilford progeria syndrome. Mech Ageing Dev 35(1):39–46PubMedCrossRefGoogle Scholar
  48. 48.
    Papakonstantinou E, Roth M, Karakiulakis G (2012) Hyaluronic acid: a key molecule in skin aging. Dermato-Endocrinol 4(3):253–258CrossRefGoogle Scholar
  49. 49.
    Wilson BT, Stark Z, Sutton RE, Danda S, Ekbote AV et al (2016) The Cockayne Syndrome Natural History (CoSyNH) study: clinical findings in 102 individuals and recommendations for care. Genet Med 18(5):483–493PubMedCrossRefGoogle Scholar
  50. 50.
    Nance MA, Berry SA (1992) Cockayne syndrome: review of 140 cases. Am J Med Genet 42(1):68–84PubMedCrossRefGoogle Scholar
  51. 51.
    Cleaver JE, Lam ET, Revet I (2009) Disorders of nucleotide excision repair: the genetic and molecular basis of heterogeneity. Nat Rev Genet 10(11):756–768PubMedCrossRefGoogle Scholar
  52. 52.
    Colella S, Nardo T, Mallery D, Borrone C, Ricci R et al (1999) Alterations in the CSB gene in three Italian patients with the severe form of Cockayne syndrome (CS) but without clinical photosensitivity. Hum Mol Genet 8(5):935–941PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Laugel V (2012) Cockayne syndrome. Gene Reviews(®), pp 6–10Google Scholar
  54. 54.
    Laugel V (2013) Cockayne syndrome: the expanding clinical and mutational spectrum. Mech Ageing Dev 134(5–6):161–170PubMedCrossRefGoogle Scholar
  55. 55.
    Weidenheim KM, Dickson DW, Rapin I (2009) Neuropathology of Cockayne syndrome: evidence for impaired development, premature aging, and neurodegeneration. Mech Ageing Dev 130(9):619–636PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Rapin I, Lindenbaum Y, Dickson DW, Kraemer KH, Robbins JH (2000) Cockayne syndrome and xeroderma pigmentosum: DNA repair disorders with overlaps and paradoxes. Neurology 55(10):1442–1449PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    D’Errico M, Pascucci B, Iorio E, Van Houten B, Dogliotti E (2013) The role of CSA and CSB protein in the oxidative stress response. Mech Ageing Dev 134(5–6):261–269PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Aamann MD, Sorensen MM, Hvitby C, Berquist BR, Muftuoglu M et al (2010) Cockayne syndrome group B protein promotes mitochondrial DNA stability by supporting the DNA repair association with the mitochondrial membrane. FASEB J 24(7):2334–2346PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Kamenisch Y, Fousteri M, Knoch J, von Thaler A-K, Fehrenbacher B et al (2010) Proteins of nucleotide and base excision repair pathways interact in mitochondria to protect from loss of subcutaneous fat, a hallmark of aging. J Exp Med 207(2):379–390PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Beal MF (2005) Mitochondria take center stage in aging and neurodegeneration. J Orthop Res 58(4):495Google Scholar
  61. 61.
    Berquist BR, Canugovi C, Sykora P, Wilson DM, Bohr VA (2012) Human Cockayne syndrome B protein reciprocally communicates with mitochondrial proteins and promotes transcriptional elongation. Nucleic Acids Res 40(17):8392–8405PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Stevnsner T, Muftuoglu M, Aamann MD, Bohr VA (2008) The role of Cockayne Syndrome group B (CSB) protein in base excision repair and aging. Mech Ageing Dev 129(7–8):441–448PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Hanawalt PC (2000) DNA repair. The bases for Cockayne syndrome. Nature 405(6785):415–416PubMedCrossRefGoogle Scholar
  64. 64.
    Lee JY, Lake RJ, Kirk J, Bohr VA, Fan H, Hohng S (2017) NAP1L1 accelerates activation and decreases pausing to enhance nucleosome remodeling by CSB. Nucleic Acids Res 45(8):4696–4707PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Lejeune J, Gautier M, Turpin R (1959) Etude des chromosomes somatiques de neuf enfants mongoliens. C R Seances Acad Sci 248(A):1721–1722Google Scholar
  66. 66.
    Wisniewski KE, Wisniewski HM, Wen GY (1985) Occurrence of neuropathological changes and dementia of Alzheimer’s disease in Down’s syndrome. Ann Neurol 17(3):278–282PubMedCrossRefGoogle Scholar
  67. 67.
    Picciotti PM, Carfì A, Anzivino R, Paludetti G, Conti G et al (2017) Audiologic assessment in adults with Down Syndrome. Am J Intellect Dev Disabil 122(4):333–341PubMedCrossRefGoogle Scholar
  68. 68.
    Hultén MA, Patel SD, Tankimanova M, Westgren M, Papadogiannakis N et al (2008) On the origin of trisomy 21 Down syndrome. Mol Cytogenet 1(1):21PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Mazzoni DS, Ackley RS, Nash DJ (1994) Abnormal pinna type and hearing loss correlations in Down’s syndrome. J Intellect Disabil Res 38(Pt 6):549–560PubMedGoogle Scholar
  70. 70.
    Mezei G, Sudan M, Izraeli S, Kheifets L (2014) Epidemiology of childhood leukemia in the presence and absence of Down syndrome. Cancer Epidemiol 38(5):479–489PubMedCrossRefGoogle Scholar
  71. 71.
    Zipursky A, Poon A, Doyle J (1992) Leukemia in Down syndrome: a review. Pediatr Hematol Oncol 9(2):139–149PubMedCrossRefGoogle Scholar
  72. 72.
    Fong CT, Brodeur GM (1987) Down’s syndrome and leukemia: epidemiology, genetics, cytogenetics and mechanisms of leukemogenesis. Cancer Genet Cytogenet 28(1):55–76PubMedCrossRefGoogle Scholar
  73. 73.
    Rosso C, Cecere G, Concolino D, Baserga M (1997) [Diabetes, hypothyroidism and celiac disease in Down’s syndrome. A case report] Diabete, ipotiroidismo e celiachia nella Sindr. di Down. Descr. di un caso Clin. Minerva Pediatr 49(10):483–485PubMedGoogle Scholar
  74. 74.
    Cogulu O, Ozkinay F, Gunduz C, Cankaya T, Aydogdu S et al (2003) Celiac disease in children with Down syndrome: importance of follow-up and serologic screening. Pediatr Int 45(4):395–399PubMedCrossRefGoogle Scholar
  75. 75.
    Baird P, Sadovnick A (1988) Life expectancy in Down syndrome adults. Lancet 332(8624):1354–1356CrossRefGoogle Scholar
  76. 76.
    Roizen NJ, Patterson D (2003) Down’s syndrome. Lancet 361(9365):1281–1289PubMedCrossRefGoogle Scholar
  77. 77.
    Lamb NE, Freeman SB, Savage-Austin a PD, Taft L et al (1996) Susceptible chiasmate configurations of chromosome 21 predispose to non-disjunction in both maternal meiosis I and meiosis II. Nat Genet 14:400–405PubMedCrossRefGoogle Scholar
  78. 78.
    Shaffer LG, Jackson-Cook CK, Stasiowski BA, Spence JE, Brown JA (1992) Parental origin determination in thirty de novo Robertsonian translocations. Am J Med Genet 43(6):957–963PubMedCrossRefGoogle Scholar
  79. 79.
    Newberger DS (2000) Down syndrome: prenatal risk assessment and diagnosis. Am Fam Physician 62(4):825–832PubMedGoogle Scholar
  80. 80.
    Antonarakis SE (1993) Human chromosome 21: genome mapping and exploration, circa 1993. Trends Genet 9(4):142–148PubMedCrossRefGoogle Scholar
  81. 81.
    Antonarakis SE, Petersen MB, McInnis MG, P a A, a a S et al (1992) The meiotic stage of nondisjunction in trisomy 21: determination by using DNA polymorphisms. Am J Hum Genet 50(3):544–550PubMedPubMedCentralGoogle Scholar
  82. 82.
    Antonarakis SE (1991) Parental origin of the extra chromosome in trisomy 21 as indicated by analysis of DNA polymorphisms. Down Syndrome Collaborative Group. N Engl J Med 324(13):872–876PubMedCrossRefGoogle Scholar
  83. 83.
    Hattori M, Fujiyama A, Taylor TD, Watanabe H, Yada T et al (2000) The DNA sequence of human chromosome 21. Nature 405(6784):311–319PubMedCrossRefGoogle Scholar
  84. 84.
    Capone GT (2001) Down syndrome: advances in molecular biology and the neurosciences. J Dev Behav Pediatr 22(1):40–59PubMedCrossRefGoogle Scholar
  85. 85.
    Busciglio J, Pelsman A, Wong C, Pigino G, Yuan M et al (2002) Altered metabolism of the amyloid beta precursor protein is associated with mitochondrial dysfunction in Down’s syndrome. Neuron 33(5):677–688PubMedCrossRefGoogle Scholar
  86. 86.
    Capone G, Kim P, Jovanovich S, Payne L, Freund L et al (2002) Evidence for increased mitochondrial superoxide production in Down syndrome. Life Sci 70(24):2885–2895PubMedCrossRefGoogle Scholar
  87. 87.
    Kȩdziora J, Bartosz G (1988) Down’s syndrome: a pathology involving the lack of balance of reactive oxygen species. Free Radic Biol Med 4(5):317–330PubMedCrossRefGoogle Scholar
  88. 88.
    Coskun PE, Busciglio J (2012) Oxidative stress and mitochondrial dysfunction in Down’s syndrome: relevance to aging and dementia. Curr Gerontol Geriatr Res 2012:383170PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Oshima J, Sidorova JM, Monnat RJ (2016) Werner syndrome: clinical features, pathogenesis and potential therapeutic interventions. Ageing Res Rev 33:105–114PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Lauper JM, Krause A, Vaughan TL, Monnat RJ (2013) Spectrum and risk of neoplasia in Werner Syndrome: a systematic review. PLoS One 8(4):e59709PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Goto M, Miller RW, Ishikawa Y, Sugano H (1996) Excess of rare cancers in Werner syndrome (adult progeria). Cancer Epidemiol Biomark Prev 5(April):239–246Google Scholar
  92. 92.
    Chen L, Oshima J (2002) Werner syndrome. J Biomed Biotechnol 2(2):46–54PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Martin GM (1997) Genetics and the pathobiology of ageing. Philos Trans R Soc Lond Ser B Biol Sci 352(1363):1773–1780CrossRefGoogle Scholar
  94. 94.
    Martin GM, Oshima J, Gray MD, Poot M (1999) What geriatricians should know about the Werner syndrome. J Am Geriatr Soc 47(9):1136–1144PubMedCrossRefGoogle Scholar
  95. 95.
    Yu CE, Oshima J, Fu YH, Wijsman EM, Hisama F et al (1996) Positional cloning of the Werner’s syndrome gene. Science 272(5259):258–262. Scholar
  96. 96.
    Gray MD, Shen JC, Kamath-Loeb a S, Blank a SBL et al (1997) The Werner syndrome protein is a DNA helicase. Nat Genet 17(1):100–103PubMedCrossRefGoogle Scholar
  97. 97.
    Huang S, Li B, Gray MD, Oshima J, Mian IS, Campisi J (1998) The premature ageing syndrome protein, WRN, is a 3′-->5′ exonuclease. Nat Genet 20(2):114–116PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Edwards DN, Machwe A, Chen L, Bohr VA, Orren DK (2015) The DNA structure and sequence preferences of WRN underlie its function in telomeric recombination events. Nat Commun 6:8331PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Fukuchi K, Martin GM, Monnat RJ (1989) Mutator phenotype of Werner syndrome is characterized by extensive deletions. Proc Natl Acad Sci U S A 86(15):5893–5897PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Gebhart E, Bauer R, Raub U, Schinzel M, Ruprecht KW, Jonas JB (1988) Spontaneous and induced chromosomal instability in Werner syndrome. Hum Genet 80(2):135–139PubMedCrossRefGoogle Scholar
  101. 101.
    PooT M, Hoehn H, Rünger TM, Martin GM (1992) Impaired S-phase transit of Werner syndrome cells expressed in lymphoblastoid cell lines. Exp Cell Res 202(2):267–273PubMedCrossRefGoogle Scholar
  102. 102.
    Maierhofer A, Flunkert J, Oshima J, Martin GM, Haaf T (2017) Accelerated epigenetic aging in Werner syndrome. Aging 9(4):1143–1152PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Nissenkorn A, Ben-Zeev B (2015) Ataxia telangiectasia. Handb Clin Neurol 132:199–214PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Lavin MF (2008) Ataxia-telangiectasia: from a rare disorder to a paradigm for cell signalling and cancer. Nat Rev Mol Cell Biol 9(10):759–769PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Boder E, Sedgwick RP (1958) ATAXIA-TELANGIECTASIA: a familial Syndrome of progressive cerebellar Ataxia, Oculocutaneous telangiectasia and frequent pulmonary infection. Pediatrics 21(4):526–554PubMedPubMedCentralGoogle Scholar
  106. 106.
    Verhagen MMM, Martin JJ, van Deuren M, Ceuterick-de Groote C, Weemaes CMR et al (2012) Neuropathology in classical and variant ataxia-telangiectasia. Neuropathology 32(3):234–244PubMedCrossRefGoogle Scholar
  107. 107.
    Bhatt JM, Bush A, van Gerven M, Nissenkorn A, Renke M et al (2015) ERS statement on the multidisciplinary respiratory management of ataxia telangiectasia. Eur Respir Rev 24(138):565–581PubMedCrossRefGoogle Scholar
  108. 108.
    Lefton-Greif MA, Crawford TO, Winkelstein JA, Loughlin GM, Koerner CB et al (2000) Oropharyngeal dysphagia and aspiration in patients with ataxia-telangiectasia. J Pediatr 136(2):225–231PubMedCrossRefGoogle Scholar
  109. 109.
    Nowak-Wegrzyn A, Crawford TO, Winkelstein JA, Carson KA, Lederman HM (2004) Immunodeficiency and infections in ataxia-telangiectasia. J Pediatr 144(4):505–511PubMedCrossRefGoogle Scholar
  110. 110.
    Shiloh Y, Lederman HM (2016) Ataxia-telangiectasia (A-T): an emerging dimension of premature ageing. Ageing Res Rev 33:76–88PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Olsen JH, Hahnemann JM, Børresen-Dale a L, Brøndum-Nielsen K, Hammarström L et al (2001) Cancer in patients with ataxia-telangiectasia and in their relatives in the nordic countries. J Natl Cancer Inst 93(2):121–127PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Murphy RC, Berdon WE, Ruzal-Shapiro C, Hall EJ, Kornecki A et al (1999) Malignancies in pediatric patients with ataxia telangiectasia. Pediatr Radiol 29(4):225–230PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Savitsky K, Barshira A, Gilad S, Rotman G, Ziv Y et al (1995) A single ataxia-telangiectasia gene with a product similar to Pi-3 kinase. Science (80-) 268(5218):1749–1753CrossRefGoogle Scholar
  114. 114.
    Guleria A, Chandna S (2016) ATM kinase: much more than a DNA damage responsive protein. DNA Repair 39(201603):1–20PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Sandoval N, Platzer M, Rosenthal A, Dörk T, Bendix R et al (1999) Characterization of ATM gene mutations in 66 ataxia telangiectasia families. Hum Mol Genet 8(1):69–79PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Gilad S, Khosravi R, Shkedy D, Uziel T, Ziv Y et al (1996) Predominance of null mutations in ataxia-telangiectasia. Hum Mol Genet 5(4):433–439PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Taylor AMR, Lam Z, Last JI, Byrd PJ (2015) Ataxia telangiectasia: more variation at clinical and cellular levels. Clin Genet 87(3):199–208PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    German J (1995) Bloom’s syndrome. Dermatol Clin 13(1):7–18PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    German J (1969) Bloom’s syndrome. I. Genetical and clinical observations in the first twenty-seven patients. Am J Hum Genet 21(2):196–227PubMedPubMedCentralGoogle Scholar
  120. 120.
    Renes JS, Willemsen RH, Wagner A, Finken MJJ, Hokken-Koelega ACS (2013) Bloom syndrome in short children born small for gestational age: a challenging diagnosis. J Clin Endocrinol Metab 98(10):3932–3938PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Keller C, Keller KR, Shew SB, Plon SE (1999) Growth deficiency and malnutrition in Bloom syndrome. J Pediatr 134(4):472–479PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Arora H, Chacon AH, Choudhary S, Mcleod MP, Meshkov L et al (2014) Bloom syndrome. Int J Dermatol 53(7):798–802PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    de Renty C, Ellis NA (2017) Bloom’s syndrome: why not premature aging?: a comparison of the BLM and WRN helicases. Ageing Res Rev 33:36–51PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    German J, Sanz M (2013) Bloom’s syndrome. In: Maloy S, Hughes K (eds) Brenner’s encyclopedia of genetics, 2nd edn. Academic Press, pp 353–355. ISBN 9780080961569, CrossRefGoogle Scholar
  125. 125.
    German J, Archibald R, Bloom D (1965) Chromosomal breakage in a rare and probably genetically determined syndrome of man. Science 148:506–507PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Wu L, Hickson ID (2003) The Bloom’s syndrome helicase suppresses crossing over during homologous recombination. Nature 426(6968):870–874PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Liu Y, West SC (2008) More complexity to the Bloom’s syndrome complex. Genes Dev 22(20):2737–2742PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    de Renty C, Ellis NA (2017) Bloom’s syndrome: why not premature aging? Ageing Res Rev 33:36–51PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Diaz A, Vogiatzi MG, Sanz MM, German J (2006) Evaluation of short stature, carbohydrate metabolism and other endocrinopathies in Bloom’s syndrome. Horm Res 66(3):111–117PubMedPubMedCentralGoogle Scholar
  130. 130.
    German J, Sanz MM, Ciocci S, Ye TZ, Ellis NA (2007) Syndrome-causing mutations of the BLM gene in persons in the Bloom’s syndrome registry. Hum Mutat 28(8):743–753PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Karow JK, Chakraverty RK, Hickson ID (1997) The Bloom’s syndrome gene product is a 3′-5′ DNA helicase. J Biol Chem 272(49):30611–30614PubMedCrossRefGoogle Scholar
  132. 132.
    Reddy BSN, Kochhar AM, Anitha M, Bamezai R (2000) Bloom’s syndrome – a first report from India. Int J Dermatol 39:760–773PubMedCrossRefGoogle Scholar
  133. 133.
    Anitha M, Kaur G, Baquer NZ, Bamezai R (2004) Dominant negative effect of novel mutations in pyruvate kinase-M2. DNA Cell Biol 23(7):442–449PubMedCrossRefGoogle Scholar
  134. 134.
    Gupta V, Bamezai RNK (2010) Human pyruvate kinase M2: a multifunctional protein. Protein Sci 19(11):2031–2044PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Bamezai R (1996) Bloom syndrome: is the gene mapped to the point? Indian J Exp Biol 34(4):298–301PubMedGoogle Scholar
  136. 136.
    Giri N, Batista DL, Alter BP, Stratakis CA (2007) Endocrine abnormalities in patients with Fanconi anemia. J Clin Endocrinol Metab 92(7):2624–2631PubMedCrossRefGoogle Scholar
  137. 137.
    Petryk A, Shankar RK, Giri N, Hollenberg AN, Rutter MM et al (2015) Endocrine disorders in Fanconi anemia: recommendations for screening and treatment. J Clin Endocrinol Metab 100(3):803–811PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Alter BP (2003) Cancer in Fanconi anemia, 1927–2001. Cancer 97(2):425–440PubMedCrossRefGoogle Scholar
  139. 139.
    Neveling K, Endt D, Hoehn H, Schindler D (2009) Genotype-phenotype correlations in Fanconi anemia. Mutat Res 668(1–2):73–91PubMedCrossRefGoogle Scholar
  140. 140.
    Calado RT (2011) Immunologic aspects of hypoplastic myelodysplastic syndrome. Semin Oncol 38(5):667–672PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Alter BP (2014) Fanconi anemia and the development of leukemia. Best Pract Res Clin Haematol 27:214–221PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Velleuer E, Dietrich R (2014) Fanconi anemia: young patients at high risk for squamous cell carcinoma. Mol Cell Pediatr 1(1):9PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Brosh RM, Bellani M, Liu Y, Seidman MM (2017) Fanconi Anemia: a DNA repair disorder characterized by accelerated decline of the hematopoietic stem cell compartment and other features of aging. Ageing Res Rev 33:67–75PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Pagano G, Talamanca AA, Castello G, Pallardó FV, Zatterale A, Degan P (2012) Oxidative stress in Fanconi anaemia: from cells and molecules towards prospects in clinical management. Biol Chem 393:11–21PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Patel KJ, Joenje H (2007) Fanconi anemia and DNA replication repair. DNA Repair (Amst) 6(7):885–890CrossRefGoogle Scholar
  146. 146.
    Kee Y, D’Andrea AD (2010) Expanded roles of the Fanconi anemia pathway in preserving genomic stability. Cold Spring, HarborCrossRefGoogle Scholar
  147. 147.
    Degan PD, Bonasi S, De caterina M, Korkina LG, Acopacasa F et al (1995) In vivo formation of 8-hydroxy-2′-deoxyguanosine in DNA correlates with release of reactive oxygen species in Fanconi’s anaemia families. Carcinogenesis 16(4):735–742PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Kumari U, Ya Jun W, Huat Bay B, Lyakhovich A (2014) Evidence of mitochondrial dysfunction and impaired ROS detoxifying machinery in Fanconi Anemia cells. Oncogene 33(2):165–172PubMedCrossRefGoogle Scholar
  149. 149.
    Lyakhovich A (2013) Damaged mitochondria and overproduction of ROS in Fanconi anemia cells. Rare Dis (Austin, Tex) 1:e24048Google Scholar
  150. 150.
    Soulier J (2011) Fanconi anemia. Hematol Am Soc Hematol Educ Program 2011(Figure 1):492–497CrossRefGoogle Scholar
  151. 151.
    Du W, Erden O, Pang Q (2014) TNF-alpha signaling in Fanconi anemia. Blood Cells Mol Dis 52(1):2–11PubMedCrossRefGoogle Scholar
  152. 152.
    Briot D, Macé-Aimé G, Subra F, Rosselli F (2008) Aberrant activation of stress-response pathways leads to TNF-α oversecretion in Fanconi anemia. Blood 111(4):1913–1923PubMedCrossRefGoogle Scholar
  153. 153.
    Korthof ET, Svahn J, de Latour RP, Terranova P, Moins-Teisserenc H et al (2013) Immunological profile of Fanconi anemia: a multicentric retrospective analysis of 61 patients. Am J Hematol 88(6):472–476PubMedCrossRefGoogle Scholar
  154. 154.
    Ibáñez A, Río P, Casado JA, Bueren JA, Fernández-Luna JL, Pipaón C (2009) Elevated levels of IL-1β in Fanconi anaemia group A patients due to a constitutively active phosphoinositide 3-kinase-Akt pathway are capable of promoting tumour cell proliferation. Biochem J 422(1):161–170PubMedCrossRefGoogle Scholar
  155. 155.
    Mandal PK, Rossi DJ (2012) DNA-damage-induced differentiation in hematopoietic stem cells. Cell 148(5):847–848PubMedCrossRefGoogle Scholar
  156. 156.
    Seita J, Weissman IL (2010) Hematopoietic stem cell: self-renewal versus differentiation. Wiley Interdiscip Rev Syst Biol Med 2(6):640–653PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Gadalla SM, Cawthon R, Giri N, Alter BP, Savage SA (2010) Telomere length in blood, buccal cells, and fibroblasts from patients with inherited bone marrow failure syndromes. Aging (Albany NY) 2(11):867–874CrossRefGoogle Scholar
  158. 158.
    Lyakhovich A, Ramirez M, Castellanos A, Castella M, Simons AM et al (2011) Fanconi anemia protein FANCD2 inhibits TRF1 polyADP-ribosylation through tankyrase1-dependent manner. Genome Integr 2(1):4PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Sarkar J, Wan B, Yin J, Vallabhaneni H, Horvath K et al (2015) SLX4 contributes to telomere preservation and regulated processing of telomeric joint molecule intermediates. Nucleic Acids Res 43(12):5912–5923PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Wan B, Yin J, Horvath K, Sarkar J, Chen Y et al (2013) SLX4 assembles a telomere maintenance toolkit by bridging multiple endonucleases with telomeres. Cell Rep 4(5):861–869PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Joenje H, Patel KJ (2001) The emerging genetic and molecular basis of fanconi anaemia. Nat Rev Genet 2(6):446–459PubMedCrossRefGoogle Scholar
  162. 162.
    Beard MEJ (2008) Fanconi anaemia. In: Congenital disorders of erythropoiesis. Elsevier, Amsterdam, pp 103–114Google Scholar
  163. 163.
    Mathew CG (2006) Fanconi anaemia genes and susceptibility to cancer. Oncogene 25(43):5875–5884PubMedCrossRefGoogle Scholar
  164. 164.
    Schneider M, Chandler K, Tischkowitz M, Meyer S (2015) Fanconi anaemia: genetics, molecular biology, and cancer – implications for clinical management in children and adults. Clin Genet 88(1):13–24PubMedCrossRefGoogle Scholar
  165. 165.
    de Winter JP, Joenje H (2009) The genetic and molecular basis of Fanconi anemia. Mutat Res 668(1–2):11–19PubMedCrossRefGoogle Scholar
  166. 166.
    Dong H, Nebert DW, Bruford EA, Thompson DC, Joenje H, Vasiliou V (2015) Update of the human and mouse Fanconi anemia genes. Hum Genomics 9(1):32PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Menck CFM, Munford V (2014) DNA repair diseases: what do they tell us about cancer and aging? Genet Mol Biol 37(Suppl 1):220–233PubMedCrossRefGoogle Scholar
  168. 168.
    Cleaver JE (1968) Defective repair replication of DNA in xeroderma pigmentosum. DNA Repair (Amst) 218:652–656Google Scholar
  169. 169.
    Wang LL, Levy ML, Lewis RA, Chintagumpala MM, Lev D et al (2001) Clinical manifestations in a cohort of 41 Rothmund-Thomson syndrome patients. Am J Med Genet 102:11–17PubMedCrossRefGoogle Scholar
  170. 170.
    Syndrome R, Mehollin-ray AR, Kozinetz CA, Schlesinger AE, Guillerman RP, Wang LL (2008) Radiographic abnormalities in Rothmund-Thomson syndrome and genotype–phenotype correlation with RECQL4 mutation status. Am J Roentgenol 191:62–66CrossRefGoogle Scholar
  171. 171.
    Larizza L, Roversi G, Volpi L (2010) Rothmund-Thomson syndrome. Orphanet J Rare Dis 5:1–16CrossRefGoogle Scholar
  172. 172.
    Lu H, Fang EF, Sykora P, Kulikowicz T, Zhang Y et al (2014) Senescence induced by RECQL4 dysfunction contributes to Rothmund – Thomson syndrome features in mice. Cell Death Dis 5:e1226PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Kitao S, Shimamoto A, Goto M, Miller RW, Smithson WA et al (1999) Mutations in RECQL4 cause a subset of cases of Rothmund-Thomson syndrome. Nat Genet 22(may):82–84PubMedCrossRefGoogle Scholar
  174. 174.
    Lu L, Jin W, Wang LL (2017) Aging in Rothmund-Thomson syndrome and related RECQL4 genetic disorders. Ageing Res Rev 33:30–35PubMedCrossRefGoogle Scholar
  175. 175.
    Schurman SH, Hedayati M, Wang Z, Singh DK, Speina E et al (2009) Direct and indirect roles of RECQL4 in modulating base excision repair capacity. Hum Mol Genet 18(18):3470–3483PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Fan W, Luo J (2008) RecQ4 facilitates UV light-induced DNA damage repair through interaction with nucleotide excision repair factor Xeroderma Pigmentosum group a (XPA)∗. J Biol Chem 283(43):29037–29044PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Shamanna RA, Singh DK, Lu H, Mirey G, Keijzers G et al (2014) RECQ helicase RECQL4 participates in non-homologous end joining and interacts with the Ku complex. Carcinogenesis 35(11):2415–2424PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Petkovic M, Dietschy T, Freire R, Jiao R, Stagljar I (2005) The human Rothmund-Thomson syndrome gene product , RECQL4 , localizes to distinct nuclear foci that coincide with proteins involved in the maintenance of genome stability. J Cell Sci 118:4261–4269PubMedCrossRefGoogle Scholar
  179. 179.
    Davis T, Tivey HSE, Brook AJC, Grimstead JW, Rokicki MJ et al (2013) Activation of p38 MAP kinase and stress signalling in fibroblasts from the progeroid Rothmund – Thomson syndrome. AGE 35:1767–1783PubMedCrossRefGoogle Scholar
  180. 180.
    Wang J-T, Xu X, Alontaga AY, Chen Y, Liu Y (2014) RECQ4, Manus impaired p32 regulation caused by the lymphoma-prone mutation drives mitochondrial dysfunction script. Cell Rep 7(3):848–858PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Gupta S, De S, Srivastava V (2014) RECQL4 and p53 potentiate the activity of polymerase γ and maintain the integrity of the human mitochondrial genome. Carcinogenesis 35(1):34–45PubMedCrossRefGoogle Scholar
  182. 182.
    Ghosh AK, Rossi ML, Singh DK, Dunn C, Ramamoorthy M et al (2012) RECQL4, the protein mutated in Rothmund-Thomson syndrome, functions in telomere maintenance∗. J Biol Chem 287(1):196–209PubMedCrossRefGoogle Scholar
  183. 183.
    Ferrarelli LK, Popuri V, Ghosh AK, Tadokoro T (2014) The RECQL4 protein, deficient in Rothmund-Thomson syndrome is active on telomeric D-Loops containing DNA metabolism blocking lesions. DNA Repair (Amst) 12(7):518–528CrossRefGoogle Scholar
  184. 184.
    Wang C, Jurk D, Maddick M, Nelson G, Martin-ruiz C, Von ZT (2009) DNA damage response and cellular senescence in tissues of aging mice. Aging Cell:311–323PubMedCrossRefGoogle Scholar
  185. 185.
    Herranz N, Gallage S, Mellone M, Wuestefeld T, Klotz S et al (2015) mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype. Nat Cell Biol 17(9):1205–1217PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Krtolica A, Parrinello S, Lockett S, Desprez P-Y, Campisi J (2001) Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc Natl Acad Sci 98(21):12072–12077PubMedCrossRefGoogle Scholar
  187. 187.
    Acosta JC, O’Loghlen A, Banito A, Guijarro MV, Augert A et al (2008) Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 133(6):1006–1018PubMedCrossRefGoogle Scholar
  188. 188.
    Shimamoto A, Kagawa H, Zensho K, Sera Y, Kazuki Y et al (2014) Reprogramming suppresses premature senescence phenotypes of Werner Syndrome cells and maintains chromosomal stability over long-term culture. PLoS One 9(11):1–13CrossRefGoogle Scholar
  189. 189.
    Savickien J, Baronait S, Zentelyt A, Treigyt GD, Navakauskien R (2016) Senescence-associated molecular and epigenetic alterations in mesenchymal stem cell cultures from amniotic fluid of Normal and fetus-affected pregnancy. Stem Cells Int 2016:2019498Google Scholar
  190. 190.
    Kusters MAA, Verstegen RHJ, De VE (2011) Down syndrome: is it really characterized by precocious immunosenescence? Aging Dis 2(6):538–545PubMedPubMedCentralGoogle Scholar
  191. 191.
    Johmura Y, Yamashita E, Shimada M, Nakanishi K (2016) Defective DNA repair increases susceptibility to senescence through extension of Chk1- mediated G2 checkpoint activation. Sci Rep 6:31194PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Jurk D, Wilson C, Passos JF, Oakley F, Correia-Melo C et al (2014) Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nat Commun 2:1–14Google Scholar
  193. 193.
    Osorio FG, Bárcena C, Soria-Valles C, Ramsay AJ, de Carlos F et al (2012) Nuclear lamina defects cause ATM-dependent NF-κB activation and link accelerated aging to a systemic inflammatory response. Genes Dev 26(20):2311–2324PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    Soria-Valles C, Osorio FG, Gutiérrez-Fernández A, De Los Angeles A, Bueno C et al (2015) NF-κB activation impairs somatic cell reprogramming in ageing. Nat Cell Biol 17(8):1004–1013PubMedCrossRefGoogle Scholar
  195. 195.
    Pareja-Galeano H, Sanchis-Gomar F, Pérez LM, Emanuele E, Lucia A et al (2016) IPSCs-based anti-aging therapies: recent discoveries and future challenges. Ageing Res Rev 27:37–41PubMedCrossRefGoogle Scholar
  196. 196.
    Moskalev AA, Shaposhnikov MV, Plyusnina EN, Zhavoronkov A, Budovsky A et al (2013) The role of DNA damage and repair in aging through the prism of Koch-like criteria. Ageing Res Rev 12(2):661–684PubMedCrossRefGoogle Scholar
  197. 197.
    Blackburn EH, Greider CW, Szostak JW (2006) Telomeres and telomerase: the path from maize, Tetrahymena and yeast to human cancer and aging. Nat Med 12(10):1133–1138PubMedCrossRefGoogle Scholar
  198. 198.
    Kazak L, Reyes A, Holt IJ (2012) Minimizing the damage: repair pathways keep mitochondrial DNA intact. Nat Rev Mol Cell Biol 13(10):659–671PubMedCrossRefGoogle Scholar
  199. 199.
    Kamenisch Y, Berneburg M (2009) Progeroid syndromes and UV-induced oxidative DNA damage. J Investig Dermatol Symp Proc 14(1):8–14PubMedCrossRefGoogle Scholar
  200. 200.
    Schumacher B, Garinis GA, Hoeijmakers JHJ (2008) Age to survive: DNA damage and aging. Trends Genet 24(2):77–85PubMedCrossRefGoogle Scholar
  201. 201.
    Hadshiew IM, Eller MS, Gilchrest BA (1999) Age-associated decreases in human DNA repair capacity: implications for the skin. AGE (Omaha) 22(2):45–57PubMedCentralCrossRefPubMedGoogle Scholar
  202. 202.
    Hoeijmakers JHJ (2009) DNA damage, aging, and cancer. N Engl J Med 361(15):1475–1485PubMedCrossRefGoogle Scholar
  203. 203.
    Worman HJ (2012) Nuclear lamins and laminopathies. J Pathol 226(2):316–325PubMedCrossRefGoogle Scholar
  204. 204.
    Vermeij WP, Hoeijmakers JHJ, Pothof J (2016) Genome integrity in aging: human syndromes, mouse models, and therapeutic options. Annu Rev Pharmacol Toxicol 56(1):427–445PubMedCrossRefGoogle Scholar
  205. 205.
    Faggioli F, Wang T, Vijg J, Montagna C (2012) Chromosome-specific accumulation of aneuploidy in the aging mouse brain. Hum Mol Genet 21(24):5246–5253PubMedPubMedCentralCrossRefGoogle Scholar
  206. 206.
    Forsberg LA, Rasi C, Razzaghian HR, Pakalapati G, Waite L et al (2012) Age-related somatic structural changes in the nuclear genome of human blood cells. Am J Hum Genet 90(2):217–228PubMedPubMedCentralCrossRefGoogle Scholar
  207. 207.
    Jacobs KB, Yeager M, Zhou W, Wacholder S, Wang Z et al (2012) Detectable clonal mosaicism and its relationship to aging and cancer. Nat Genet 44(6):651–658PubMedPubMedCentralCrossRefGoogle Scholar
  208. 208.
    Laurie CC, Laurie CA, Rice K, Doheny KF, Zelnick LR et al (2012) Detectable clonal mosaicism from birth to old age and its relationship to cancer. Nat Genet 44(6):642–650PubMedPubMedCentralCrossRefGoogle Scholar
  209. 209.
    Pan M-R, Li K, Lin S-Y, Hung W-C (2016) Connecting the dots: from DNA damage and repair to aging. Int J Mol Sci 17(5):685PubMedCentralCrossRefPubMedGoogle Scholar
  210. 210.
    Gredilla R, Garm C, Stevnsner T (2012) Nuclear and mitochondrial DNA repair in selected eukaryotic aging model systems. Oxidat Med Cell Longev 2012:1–12CrossRefGoogle Scholar
  211. 211.
    Park CB, Larsson N-G (2011) Mitochondrial DNA mutations in disease and aging. J Cell Biol 193(5):809–818PubMedPubMedCentralCrossRefGoogle Scholar
  212. 212.
    Circ, Release P, (Who) WHO, Xie S-H, Liu A-L et al (2010) DNA damage and oxidative stress in human liver cell L-02 caused by surface water extracts during drinking water treatment in a waterworks in China. Environ Mol Mutagen 51(3):229–235Google Scholar
  213. 213.
    Taylor RW, Turnbull DM (2005) Mitochondrial DNA mutations in human disease. Nat Rev Genet 6(5):389–402PubMedPubMedCentralCrossRefGoogle Scholar
  214. 214.
    Lagouge M, Larsson N-G (2013) The role of mitochondrial DNA mutations and free radicals in disease and ageing. J Intern Med 273(6):529–543PubMedPubMedCentralCrossRefGoogle Scholar
  215. 215.
    Bratic A, Larsson N (2013) Review series: the role of mitochondria in aging. J Clin Invest 123(3):951–957PubMedPubMedCentralCrossRefGoogle Scholar
  216. 216.
    Wallace DC (2005) A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 39(1):359–407PubMedPubMedCentralCrossRefGoogle Scholar
  217. 217.
    Kujoth GC, Hiona A, Pugh TD, Someya S, Panzer K et al (2005) Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 309(5733):481–484PubMedCrossRefGoogle Scholar
  218. 218.
    Vermulst M, Wanagat J, Kujoth GC, Bielas JH, Rabinovitch PS et al (2008) DNA deletions and clonal mutations drive premature aging in mitochondrial mutator mice. Nat Genet 40(4):392–394PubMedCrossRefPubMedCentralGoogle Scholar
  219. 219.
    Kraytsberg Y, Simon DK, Turnbull DM, Khrapko K (2009) Do mtDNA deletions drive premature aging in mtDNA mutator mice? Aging Cell 8(4):502–506PubMedPubMedCentralCrossRefGoogle Scholar
  220. 220.
    Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AT et al (2004) [Mt-17] Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429(6990):417–423PubMedPubMedCentralCrossRefGoogle Scholar
  221. 221.
    Beal MF (2002) Oxidatively modified proteins in aging and disease. Free Radic Biol Med 32(9):797–803PubMedCrossRefGoogle Scholar
  222. 222.
    Pesce V, Cormio A, Fracasso F, Vecchiet J, Felzani G et al (2001) Age-related mitochondrial genotypic and phenotypic alterations in human skeletal muscle. Free Radic Biol Med 30(11):1223–1233PubMedCrossRefGoogle Scholar
  223. 223.
    Chabi B, Ljubicic V, Menzies KJ, Huang JH, Saleem A, Hood DA (2008) Mitochondrial function and apoptotic susceptibility in aging skeletal muscle. Aging Cell 7(1):2–12PubMedCrossRefGoogle Scholar
  224. 224.
    Payne BAI, Chinnery PF (2015) Mitochondrial dysfunction in aging: much progress but many unresolved questions. Biochim Biophys Acta Bioenerg 1847(11):1347–1353CrossRefGoogle Scholar
  225. 225.
    Lee S, Jeong SY, Lim WC, Kim S, Park YY et al (2007) Mitochondrial fission and fusion mediators, hFis1 and OPA1, modulate cellular senescence. J Biol Chem 282(31):22977–22983PubMedPubMedCentralCrossRefGoogle Scholar
  226. 226.
    Park Y-Y, Lee S, Karbowski M, Neutzner A, Youle RJ, Cho H (2010) Loss of MARCH5 mitochondrial E3 ubiquitin ligase induces cellular senescence through dynamin-related protein 1 and mitofusin 1. J Cell Sci 123(4):619–626PubMedPubMedCentralCrossRefGoogle Scholar
  227. 227.
    Ziegler DV, Wiley CD, Velarde MC (2014) Mitochondrial effectors of cellular senescence: beyond the free radical theory of aging. Aging Cell 14:1–7PubMedPubMedCentralCrossRefGoogle Scholar
  228. 228.
    Wiel C, Lallet-Daher H, Gitenay D, Gras B, Le Calvé B et al (2014) Endoplasmic reticulum calcium release through ITPR2 channels leads to mitochondrial calcium accumulation and senescence. Nat Commun 5:1–10Google Scholar
  229. 229.
    Van Der Veer E, Ho C, O’Neil C, Barbosa N, Scott R et al (2007) Extension of human cell lifespan by nicotinamide phosphoribosyltransferase. J Biol Chem 282(15):10841–10845PubMedCrossRefGoogle Scholar
  230. 230.
    Borradaile NM, Pickering GJ (2009) Nicotinamide phosphoribosyltransferase imparts human endothelial cells with extended replicative lifespan and enhanced angiogenic capacity in a high glucose environment. Aging Cell 8(2):100–112PubMedCrossRefPubMedCentralGoogle Scholar
  231. 231.
    Verdin E (2015) NAD+ in aging, metabolism, and neurodegeneration. Science (80-) 350(6265):1208–1213CrossRefGoogle Scholar
  232. 232.
    ichiro IS, Guarente L (2014) NAD+ and sirtuins in aging and disease. Trends Cell Biol 24(8):464–471CrossRefGoogle Scholar
  233. 233.
    Bolinches-Amorós A, Mollá B, Pla-MartÃ-n D, Palau F, González-Cabo P (2014) Mitochondrial dysfunction induced by frataxin deficiency is associated with cellular senescence and abnormal calcium metabolism. Front Cell Neurosci 8(May):1–15Google Scholar
  234. 234.
    Stöckl P, Hütter E, Zwerschke W, Jansen-Dürr P (2006) Sustained inhibition of oxidative phosphorylation impairs cell proliferation and induces premature senescence in human fibroblasts. Exp Gerontol 41(7):674–682PubMedCrossRefPubMedCentralGoogle Scholar
  235. 235.
    Wang W, Yang X, De Silanes IL, Carling D, Gorospe M (2003) Increased AMP:ATP ratio and AMP-activated protein kinase activity during cellular senescence linked to reduced HuR function. J Biol Chem 278(29):27016–27023PubMedCrossRefPubMedCentralGoogle Scholar
  236. 236.
    Rivera-Torres J, Acin-Perez R, Cabezas-Sanchez P, Osorio FG, Gonzalez-Gomez C et al (2013) Identification of mitochondrial dysfunction in Hutchinson-Gilford progeria syndrome through use of stable isotope labeling with amino acids in cell culture. J Proteome 91:466–477CrossRefGoogle Scholar
  237. 237.
    Scheibye-Knudsen M, Croteau DL, Bohr VA (2013) Mitochondrial deficiency in Cockayne syndrome. Mech Ageing Dev 134(5–6):275–283PubMedPubMedCentralCrossRefGoogle Scholar
  238. 238.
    Chatre L, Biard DSF, Sarasin A, Ricchetti M (2015) Reversal of mitochondrial defects with CSB-dependent serine protease inhibitors in patient cells of the progeroid Cockayne syndrome. Proc Natl Acad Sci 112(22):E2910–E2919PubMedCrossRefPubMedCentralGoogle Scholar
  239. 239.
    Saini SK, Mangalhara KC, Prakasam G, Bamezai RNK (2017) DNA Methyltransferase1 (DNMT1) Isoform3 methylates mitochondrial genome and modulates its biology. Sci Rep 7(1):1525PubMedPubMedCentralCrossRefGoogle Scholar
  240. 240.
    Eisenberg DTA (2011) An evolutionary review of human telomere biology: the thrifty telomere hypothesis and notes on potential adaptive paternal effects. Am J Hum Biol 23(2):149–167PubMedCrossRefPubMedCentralGoogle Scholar
  241. 241.
    Olovnikov AM (1996) Telomeres, telomerase, and aging: origin of the theory. Exp Gerontol 31(4):443–448PubMedCrossRefPubMedCentralGoogle Scholar
  242. 242.
    Greider CW (1998) Telomerase activity, cell proliferation, and cancer. Proc Natl Acad Sci U S A 95(1):90–92PubMedPubMedCentralCrossRefGoogle Scholar
  243. 243.
    Hohaus S, Voso MT, Orta-La Barbera E, Cavallo S, Bellacosa A et al (1997) Telomerase activity in human hematopoietic progenitor cells. Haematologica 82(3):262–268PubMedPubMedCentralGoogle Scholar
  244. 244.
    Lansdorp PM, Verwoerd NP, Van De Rijke FM, Dragowska V, Little MT et al (1996) Heterogeneity in telomere length of human chromosomes. Hum Mol Genet 5(5):685–691PubMedCrossRefPubMedCentralGoogle Scholar
  245. 245.
    Ravindranath N, Dalal R, Solomon B, Djakiew D, Dym M (1997) Loss of telomerase activity during male germ cell differentiation. Endocrinology 138(9):4026–4029PubMedCrossRefPubMedCentralGoogle Scholar
  246. 246.
    Hornsby PJ (2007) Telomerase and the aging process. Exp Gerontol 42(7):575–581PubMedPubMedCentralCrossRefGoogle Scholar
  247. 247.
    Frenck RW, Blackburn EH, Shannon KM (1998) The rate of telomere sequence loss in human leukocytes varies with age. Proc Natl Acad Sci U S A 95(10):5607–5610PubMedPubMedCentralCrossRefGoogle Scholar
  248. 248.
    Muñoz P, Blanco R, Flores JM, Blasco MA (2005) XPF nuclease-dependent telomere loss and increased DNA damage in mice overexpressing TRF2 result in premature aging and cancer. Nat Genet 37(10):1063–1071PubMedCrossRefPubMedCentralGoogle Scholar
  249. 249.
    Celli GB, de Lange T (2005) DNA processing is not required for ATM-mediated telomere damage response after TRF2 deletion. Nat Cell Biol 7(7):712–718PubMedCrossRefPubMedCentralGoogle Scholar
  250. 250.
    Benetti R, García-Cao M, Blasco MA (2007) Telomere length regulates the epigenetic status of mammalian telomeres and subtelomeres. Nat Genet 39(2):243–250PubMedCrossRefPubMedCentralGoogle Scholar
  251. 251.
    Adams J, Martin-Ruiz C, Pearce MS, White M, Parker L, von Zglinicki T (2007) No association between socio-economic status and white blood cell telomere length. Aging Cell 6(1):125–128PubMedCrossRefPubMedCentralGoogle Scholar
  252. 252.
    Cherkas LF, Hunkin JL, Kato BS, Richards JB, Gardner JP et al (2008) The association between physical activity in leisure time and leukocyte telomere length. Arch Intern Med 168(2):154–158PubMedCrossRefGoogle Scholar
  253. 253.
    Nordfjäll K, Eliasson M, Stegmayr B, Melander O, Nilsson P, Roos G (2008) Telomere length is associated with obesity parameters but with a gender difference. Obesity 16(12):2682–2689PubMedCrossRefGoogle Scholar
  254. 254.
    Valdes AM, Andrew T, Gardner JP, Kimura M, Oelsner E et al (2005) Obesity, cigarette smoking, and telomere length in women. Lancet 366(9486):662–664PubMedCrossRefGoogle Scholar
  255. 255.
    Chin L, Artandi SE, Shen Q, Tam A, Lee SL et al (1999) p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell 97(4):527–538PubMedCrossRefGoogle Scholar
  256. 256.
    Jacobs JJL, De Lange T (2004) Significant role for p16INK4a in p53-independent telomere-directed senescence. Curr Biol 14(24):2302–2308PubMedCrossRefGoogle Scholar
  257. 257.
    García-Cao I, García-Cao M, Tomás-Loba A, Martín-Caballero J, Flores JM et al (2006) Increased p53 activity does not accelerate telomere-driven ageing. EMBO Rep 7(5):546–552PubMedPubMedCentralGoogle Scholar
  258. 258.
    R a D (2013) NIH Public Access 13(6):397–404Google Scholar
  259. 259.
    Ahmed S, Passos JF, Birket MJ, Beckmann T, Brings S et al (2008) Telomerase does not counteract telomere shortening but protects mitochondrial function under oxidative stress. J Cell Sci 121(7):1046–1053PubMedCrossRefGoogle Scholar
  260. 260.
    Santos JH, Meyer JN, Skorvaga M, Annab LA, Van Houten B (2004) Mitochondrial hTERT exacerbates free-radical-mediated mtDNA damage. Aging Cell 3(6):399–411PubMedCrossRefGoogle Scholar
  261. 261.
    Chen L, Zhang Y, Zhang Q, Li H, Luo Z, Fang H (2012) NIH Public Access 47(6):839–850Google Scholar
  262. 262.
    Sahin E, Depinho RA (2010) Linking functional decline of telomeres, mitochondria and stem cells during ageing. Nature 464:520–528PubMedPubMedCentralCrossRefGoogle Scholar
  263. 263.
    Chang S, Multani AS, Cabrera NG, Naylor ML, Laud P et al (2004) Essential role of limiting telomeres in the pathogenesis of Werner syndrome. Nat Genet 36(8):877–882PubMedCrossRefPubMedCentralGoogle Scholar
  264. 264.
    Lee SS, Bohrson C, Pike AM, Wheelan SJ, Greider CW (2015) HHS Public Access. 13(8):1623–1632Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Kailash Chandra Mangalhara
    • 1
  • R. N. K. Bamezai
    • 1
  1. 1.National Centre of Applied Human Genetics, School of Life SciencesJawaharlal Nehru UniversityNew DelhiIndia

Personalised recommendations