Advertisement

Multifractal Correlation Study Between Posture and Autonomic Deregulation Using ECG and Blood Pressure Data

  • Dipak Ghosh
  • Shukla Samanta
  • Sayantan Chakraborty
Chapter

Abstract

Recently posture-induced cardiovascular changes have become a subject of study for its obvious implications. This chapter presents analysis of non-linear time series of ECG and arterial blood pressure (ABP) data from a new perspective using state-of-the-art non-linear technique for assessment of cardiac disorder induced by different human posture. Precisely two methods multifractal detrended fluctuation analysis and multifractal detrended cross-correlation analysis have been applied to ECG and ABP data to quantify degree of impact of posture on cardiovascular functions. Moreover the knowledge of cross-correlation parameters is significant as it provides information for understanding the dynamics of orthostatic stress.

Notes

Acknowledgment

The authors gratefully acknowledge Physica A and Elsevier Publishing Co. for providing the copyrights of Figs. 6.1a, b, 6.2, 6.3, 6.4, and 6.5 and Tables 6.1, 6.2, and 6.3.

References

  1. Acharya UR, Joseph KP, Kannathal N, Lim CM, Suri JS (2006) Heart rate variability: a review. Med Biol Eng Comput 44:1031–1051CrossRefGoogle Scholar
  2. Ahmad S, Chen S, Soueidan K, Batkin I, Bolic M et al (2012) Electrocardiogram – assisted blood pressure estimation. IEEE Trans Biomed Eng 59:608–618PubMedCrossRefGoogle Scholar
  3. Ahmed MW, Kadish AH, Parker MA, Goldberger JJ (1994) Effect of physiologic and pharmacologic adrenergic stimulation on heart rate variability. J Am Coll Cardiol 24:1082–1090PubMedCrossRefGoogle Scholar
  4. Aubert AE, Ramaekers D (1999) Neurocardiology: the benefits of irregularity: the basics of methodology, physiology and currentclinical applications. Acta Cardiol 54:107–120PubMedGoogle Scholar
  5. Aubert AE, Seps B, Beckers F (2003) Heart rate variability in athletes. Sports Med 33:889–919PubMedCrossRefGoogle Scholar
  6. Babloyantz A, Destexhe A (1988) Is the normal heart a periodic oscillator. Biol Cybern 58:203–211PubMedCrossRefGoogle Scholar
  7. Baumert M, Walther T, Hopfe J, Stepan H, Faber R et al (2002) Joint symbolic dynamic analysis of beat-to-beat interactions of heart rate and systolic blood pressure in normal pregnancy. Med Biol Eng Comput 40:241–245PubMedCrossRefGoogle Scholar
  8. Berilgen MS, Sari T, Bulut S, Mungen B (2004) Effects of epilepsy on autonomic nervous system and respiratory function tests. Epilepsy Behav 5:513–516PubMedCrossRefGoogle Scholar
  9. Berument MH, Ceylan N, Dogan N (2010) The impact of oil price shocks on the economic growth of selected MENA1 countries. Energy J 31:149–176Google Scholar
  10. Bishop SM, Yarham SI, Navapurkar VU, Menon DK, Ercole A (2012) Multifractal analysis of hemodynamic behaviour: intraoperative instability and its pharmacological manipulation. Anesthesiology 117:810–821PubMedCrossRefGoogle Scholar
  11. Bojanov G (2005) In: Iaizzo PA (ed) Handbook of cardiac anatomy, physiology, and devices. Humana Press, TotowaGoogle Scholar
  12. Borst C, Wieling W, Van Brederode JF, Hond A, de Rijk LG et al (1982) Mechanisms of initial heart rate response to postural change. Am J Phys 243:H676–H681Google Scholar
  13. Butler GC, Yamamoto Y, Xing HC, Northey DR, Hughson RL (1993) Heart rate variability and fractal dimension during orthostatic challenges. J Appl Physiol 75:2602–2612PubMedCrossRefGoogle Scholar
  14. Castellano V, Olive JL, Stoner L, Black C, McCully KK (2004) Blood flow response to a postural challenge in older men and women. Dyn Med 3:1PubMedPubMedCentralCrossRefGoogle Scholar
  15. Castiglioni P, Merati G (2017) Fractal analysis of heart rate variability reveals alterations of the integrative autonomic control of circulation in paraplegic individuals. Physiol Meas 38:774PubMedCrossRefGoogle Scholar
  16. Castiglioni P, Lazzeroni D, Coruzzi P, Faini A (2018) Multifractal-multiscale analysis of cardiovascular signals: a DFA-based characterization of blood pressure and heart-rate complexity by gender. Complexity, 2018, Article ID 4801924Google Scholar
  17. Chaffin DG, Goldberg CC, Reed KL (1991) The dimension of chaos in the fetal heart rate. Am J Obstet Gynecol 165:1425–1429PubMedCrossRefGoogle Scholar
  18. Chau NP, Chanudet X, Bauduceau B, Gautier D, Larroque P (1993) Fractal dimension of heart rate and blood pressure in healthy subjects and in diabetic subjects. Blood Press 2:101–107PubMedCrossRefGoogle Scholar
  19. Chen SS (2010) Do higher oil prices push the stock market into bear territory? Energy Econ 32:490–495CrossRefGoogle Scholar
  20. Coenen AJ, Rompelman O, Kitney RI (1977) Measurement of heart-rate variability: part 2-hardware digital device for the assessment of heart-rate variability. Med Biol Eng Comput 15:423–430PubMedCrossRefGoogle Scholar
  21. Cooke WH, Hoag JB, Crossman AA, Kuusela TA, Tahvanainen KUO et al (1999) Human responses to upright tilt: a window on central autonomic integration. J Physiol 517:617–628PubMedPubMedCentralCrossRefGoogle Scholar
  22. Corino VDA, Belletti S, Terranova P, Lombardi F, Mainardi LT (2010) Heart rate and systolic blood pressure in patients with persistent atrial fibrillation: a linguistic analysis. Methods Inf Med 49:516–520PubMedCrossRefGoogle Scholar
  23. Cornforth D, Jelinek HF, Tarvainen M (2015) A comparison of non-linear measures for the detection of cardiac autonomic neuropathy from heart rate variability. Entropy 17:1425–1440CrossRefGoogle Scholar
  24. Costa M, Goldberger AL, Peng CK (2002) Multiscale entropy analysis of complex physiologic time series. Phys Rev Lett 89:068–102CrossRefGoogle Scholar
  25. Costa M, Goldberger AL, Peng C-K (2005) Multiscale entropy analysis of biological signals. Phys Rev E 71:021–906Google Scholar
  26. Dasheiff RM, Dickinson LJ (1986) Sudden unexpected death of epileptic patient due to cardiac arrhythmia after seizure. Arch Neurol 43:194–196PubMedCrossRefGoogle Scholar
  27. Dawson SL, Manktelow BN, Robinson TG, Panerai RB, Potter JF (2000) Which parameters of beat-to-beat blood pressure and variability best predict early outcome after acute ischemic stroke? Stroke 31:463–468PubMedCrossRefGoogle Scholar
  28. De Ferrari GM, Sanzo A, Schwartz PJ (2009) Chronic vagal stimulation in patients with congestive heart failure. In: Conference proceedings IEEE engineering in medicine and biology society, pp 2037–2039Google Scholar
  29. Drozdz D, Kwapień J, Oświecimka P, Rak R (2009) Quantitative features of multifractal subtleties in time series. Europhys Lett 88:60003CrossRefGoogle Scholar
  30. Dutta S (2010) Multifractal properties of ECG patterns of patients suffering from congestive heart failure. J Stat Mech 2010:P12021CrossRefGoogle Scholar
  31. Dutta S, Ghosh D, Samanta S (2016) Non linear approach to study the dynamics of neurodegenerative diseases by multifractal detrended cross-correlation analysis – a quantitative assessment on gait disease. Physica A 448:181–195CrossRefGoogle Scholar
  32. Eckmann JP, Ruelle D (1985) Ergodic theory of chaos and strange attractors. Rev Mod Phys 57:617–656CrossRefGoogle Scholar
  33. Estrada GM, Mendoza LE, Molina V (2014) Relationship of blood pressure with the electrical signal of the heart using signal processing. Tecciencia 9:9–14CrossRefGoogle Scholar
  34. Ewing DJ, Hume L, Campbell IW, Murray A, Neilson JM et al (1980) Autonomic mechanisms in the initial heart rate response to standing. J Appl Physiol 49:809–814PubMedCrossRefGoogle Scholar
  35. Faini A, Parati G, Rienzo MD, Castiglioni P (2013) Night and day changes in heart rate and blood pressure fractal dimensions from 24-hour ambulatory blood pressure monitoring devices. Comput Cardiol 40:475–478Google Scholar
  36. Faini A, Parati G, Bilo G, Rienzo MD, Castiglioni P (2014) Fractal characteristics of blood pressure and heart rate from ambulatory blood pressure monitored over 24 hours. In: 8th conference of the European Study Group on Cardiovascular Oscillations (ESGCO 2014), pp 73–74Google Scholar
  37. Fakhouri SY (1980) Identification of Volterra kernels of non-linear discrete system. In: IEEE proceedings D control theory and applications, vol 127, pp 296–304Google Scholar
  38. Fei L, Anderson MH, Statters DJ, Malik M, Camm AJ (1995) Effects of passive tilt and submaximal exercise on spectral heart rate variability in ventricular fibrillation patients without significant structural heart rate disease. Am Heart J 129:285–290PubMedCrossRefGoogle Scholar
  39. Filis G (2010) Macro economy, stock market and oil prices: do meaningful relationships exist among their cyclical fluctuations? Energy Econ 32:877–886CrossRefGoogle Scholar
  40. Foldvary-Schaefer N, Unnwongse K (2011) Localizing and lateralizing features of auras and seizures. Epilepsy Behav 20:160–166PubMedCrossRefGoogle Scholar
  41. Fuchs K, Schumann AY, Kuhnhold A, Guzik P, Piskorski J et al (2010) Comparing analysis of heart rate and blood pressure fluctuations in healthy subjects In: Proceedings of the 6th ESGCO 2010, April 12–14, Berlin GermanyGoogle Scholar
  42. Gesche H, Grosskurth D, Küchler G, Patzak A (2012) Continuous blood pressure measurement by using the pulse transit time: comparison to a cuff-based method. Eur J Appl Physiol 112:309–315PubMedCrossRefGoogle Scholar
  43. Ghosh D, Dutta S, Chakraborty S (2014) Multifractal detrended cross-correlation analysis for epileptic patient in seizure and seizure free status. Chaos, Solitons Fractals 67:1–10CrossRefGoogle Scholar
  44. Ghosh D, Dutta S, Chakraborty S, Samanta S (2018) Chaos based non-linear analysis to study cardiovascular responses to changes in posture. Physica A 512:392–403CrossRefGoogle Scholar
  45. Glass L, Mackey MC (1988) From clocks to chaos: the rhythms of life. Princeton University Press, PrincetonGoogle Scholar
  46. Goldberger AL (1991) Is the normal heartbeat chaotic or homeostatic? News Physiol Sci 6:87–91PubMedGoogle Scholar
  47. Goldberger AL, West BJ (1987) Applications of non-linear dynamics to clinical cardiology. Ann NY Acad Sci 504:195–213PubMedCrossRefGoogle Scholar
  48. Goldberger AL, Rigney DR, Mietus J, Antman EM, Greenwald S (1988) Non-linear dynamics in sudden cardiac death syndrome: heart rate oscillations and bifurcations. Experientia 44:983–987PubMedCrossRefGoogle Scholar
  49. Gospodinova E, Gospodinov M (2014) Fractal and multifractal analysis of medical data. Comparative Analysis of Biological SignalsGoogle Scholar
  50. Grassberger P, Procaccia I (1983) Measuring the strangeness of strange attractors. Physica D 9:189–208CrossRefGoogle Scholar
  51. Hainsworth R (1998) Physiology of the cardiac autonomic system. In: Malik M (ed) Clinical guide to cardiac autonomic tests. Kluwer Academic Publishers, DordrechtGoogle Scholar
  52. He LY, Chen SP (2011) Multifractal detrended cross-correlation analysis of agricultural futures markets. Chaos, Solitons Fractals 44:355–361CrossRefGoogle Scholar
  53. Heldt T, Oefinger MB, Hoshiyama M, Mark RG (2003) Circulatory response to passive and active changes in posture. Comput Cardiol 30:263–266Google Scholar
  54. Hughson RL, Maillet A, Dureau G, Yamamoto Y, Gharib C (1995) Spectral analysis of blood pressure variability in heart transplant patients. Hypertension 25:643–650PubMedCrossRefGoogle Scholar
  55. Humeau A, Blondeau FC, Rousseau D, Rousseau P, Trzepizur W et al (2008) Multifractality, sample entropy, and wavelet analyses for age-related changes in the peripheral cardiovascular system. Preliminary results. Am Assoc Physicists Med 35:717–723Google Scholar
  56. Ivanov PC, Amaral LAN, Goldberger AL, Havlin S, Rosenblum MG et al (1999) Multifractality in human heartbeat dynamics. Nature 399:461–465PubMedPubMedCentralCrossRefGoogle Scholar
  57. Jiang ZQ, Yang YH, Wang GJ, Zhou WX (2017a) Joint multifractal analysis based on wavelet leaders. Front Phys 12:128907CrossRefGoogle Scholar
  58. Jiang ZQ, Gao XL, Zhou WX, Stanley HE (2017b) Multifractal cross wavelet analysis. Fractals 25:1750054CrossRefGoogle Scholar
  59. Jones CM, Kaul G (1996) Oil and the stock markets. J Financ 51:463–491CrossRefGoogle Scholar
  60. Jones AYM, Kam C, Lai KW, Lee HY, Chow HT et al (2003) Changes in heart rate and R-wave amplitude with posture. Chin J Phys 46:63–69Google Scholar
  61. Kamal A (2006) Assessment of autonomic function for healthy and diabetic patients using entrainment methods and spectral techniques. In: IEEE 32nd annual Northeast bioengineering conference, Easton, Pennsylvania, pp 161–162Google Scholar
  62. Kamal AK (2010) Assessment of autonomic function in epileptic patients. Neurosciences (Riyadh) 15:244–248Google Scholar
  63. Kamal AK (2014) Novel method for assessment of autonomic function in health and disease: an application to epilepsy. Int J Neurorehabil 1:133CrossRefGoogle Scholar
  64. Kantelhardt JW, Zschiegner SA, Koscielny-Bunde E, Havlin S, Bunde A et al (2002) Multifractal detrended fluctuation analysis of nonstationary signals. Physica A 316:87–114CrossRefGoogle Scholar
  65. Kinnane OP, Ringwood JV, Ramchandra R, Barrett CJ, Guild SJ et al (2003) Deterministic chaos in blood pressure signals during different physiological conditions. In: IFAC modelling and control in biomedical systems, Melbourne, Australia, 2003, pp 323–328CrossRefGoogle Scholar
  66. Klabunde RE (2005) Cardiovascular physiology concepts. Williams & Wilkins, Baltimore, p 2005Google Scholar
  67. Kristoufek L (2013) Mixed-correlated ARFIMA processes for power-law cross-correlations. Physica A 392:6484–6493CrossRefGoogle Scholar
  68. Kristoufek L (2015a) Can the bivariate Hurst exponent be higher than an average of the separate Hurst exponents? Physica A 431:124–127CrossRefGoogle Scholar
  69. Kristoufek L (2015b) On the interplay between short and long term memory in the power-law cross-correlations setting. Physica A 421:218–222CrossRefGoogle Scholar
  70. Kristoufek L (2016) Power-law cross-correlations estimation under heavy tails. Commun Nonlinear Sci Numer Simul 40:163–172CrossRefGoogle Scholar
  71. Kuusela TA, Jartti TT, Tahvanainen KUO, Kaila TJ (2002) Non-linear methods of biosignal analysis in assessing terbutaline-induced heart rate and blood pressure changes. Am J Physiol Heart Circ Physiol 282:H773–H781PubMedCrossRefGoogle Scholar
  72. Kwapien J, Oswiecimka P, Drozdz D (2015) Detrended fluctuation analysis made flexible to detect range of cross-correlated fluctuations. Phys Rev E 92:052815CrossRefGoogle Scholar
  73. Lahrmann H, Cortelli P, Hilz M, Mathias CJ, Struhal W et al (2006) EFNS guidelines on the diagnosis and management of orthostatic hypotension. Eur J Neurol 13:930–936PubMedCrossRefGoogle Scholar
  74. Lake DE, Richman JS, Griffin MP, Moorman JR (2002) Sample entropy analysis of neonatal heart rate variabilityAmerican. Am J Phys Regul Integr Comp Phys 283:R789–R797Google Scholar
  75. Malik M, Camm AJ (1990) Heart rate variability. Clin Cardiol 13:570–576PubMedCrossRefGoogle Scholar
  76. Malik M, Camm AJ (1995) Heart rate variability. Futura Publishing Company, Inc, ArmonkGoogle Scholar
  77. Meregnani J, Clarençon D, Vivier M, Peinnequin A, Mouret C et al (2011) Anti-inflammatory effect of vagus nerve stimulation in a rat model of inflammatory bowel disease. Auton Neurosci 160:82–89PubMedCrossRefGoogle Scholar
  78. Moga VD, Kurcalte I, Moga M, Vidu F, Rezus C, et al (2014) Chaos theory and non-linear dynamics in hypertensive cardiopathy and heart failure. In: Electrocardiology 2014 – Proceedings of the 41st international congress on electrocardiology, 24, June 4–7, 2014, Bratislava, SlovakiaGoogle Scholar
  79. Montano N, Ruscone TG, Porta A, Lombardi F, Pagani M et al (1994) Power spectrum analysis of heart rate variability to assess the changes in sympathovagal balance during graded orthostatic tilt. Circulation 90:1826–1831PubMedCrossRefGoogle Scholar
  80. Movahed S, Hermanis E (2008) Fractal analysis of river flow fluctuations. Physica A 387:915–932CrossRefGoogle Scholar
  81. Nakamura Y, Yamamoto Y, Muraoka I (1993) Autonomic control of heart rate during physical exercise and fractal dimension of heart rate variability. J Appl Physiol 74:875–881PubMedCrossRefGoogle Scholar
  82. Natelson BH (1985) Neurocardiology, an interdisciplinary area for the 80s. Arch Neurol 42:178–184PubMedCrossRefGoogle Scholar
  83. Nepal GB, Paudel BH (2012) Effect of posture on heart rate variability in school children. Nepal Med Coll J 14:298–302PubMedGoogle Scholar
  84. Norris PR, Anderson SM, Jenkins JM, Williams AE, Morris JA Jr (2008) Heart rate multiscale entropy at three hours predicts hospital mortality in 3,154 trauma patients. Shock 30:17–22PubMedCrossRefGoogle Scholar
  85. Novak V, Novak P, de Champlain J, Le Blanc AR, Martin R et al (1993) Influence of respiration on heart rate and blood pressure fluctuations. J Appl Physiol 74:617–626PubMedCrossRefGoogle Scholar
  86. Oppenheimer S (2001) Forebrain lateralization and the cardiovascular correlates of epilepsy. Brain 124:2345–2346PubMedCrossRefGoogle Scholar
  87. Oswiecimka P, Drożdż S, Forczek M, Jadach S, Kwapień J (2014) Detrended cross-correlation analysis consistently extended to multifractality. Phys Rev E 89:–023305Google Scholar
  88. Pachauri N, Mishra DK (2012) Phase synchronization and coherence analysis between ECG & arterial blood pressure. Int J Comput Appl 44:0975–8887Google Scholar
  89. Pagani M, Lombardi F, Guzzetto S, Rimoldi O, Furlan R et al (1986) Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympathovagal interaction in man and conscious dog. Circ Res 59:178–193PubMedCrossRefGoogle Scholar
  90. Papaioannou TG, Vlachopoulos C, Loakeimidis N, Alexopoulos N, Stefanadis C (2006) Non-linear dynamics of blood pressure variability after caffeine consumption. Clin Med Res 4:114–118PubMedPubMedCentralCrossRefGoogle Scholar
  91. Parati G, Di Rienzo M, Bertinieri G, Pomidossi G, Casadei R et al (1988) Evaluation of the baroreceptor-heart rate reflex by 24-hour intra-arterial blood pressure monitoring in humans. Hypertension 12:214–222PubMedCrossRefGoogle Scholar
  92. Pavlov AN, Ziganshin AR, Klimova OA (2005) Multifractal characterization of blood pressure dynamics: stress-induced phenomena. Chaos, Solitons Fractals 24:57–63CrossRefGoogle Scholar
  93. Peng CK, Havlin S, Stanley HE, Goldberger AL (1995) Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 5:82–87PubMedCrossRefGoogle Scholar
  94. Pichon A, Roulaud M, Jonville SA, de Bisschop C, Denjean A (2006) Spectral analysis of heart rate variability: interchangeability between autoregressive analysis and fast Fourier transform. J Electrocardiol 39:31–37PubMedCrossRefGoogle Scholar
  95. Pincus SM (1991) Approximate entropy as a measure of system complexity. Proc Natl Acad Sci U S A 88:2297–2301PubMedPubMedCentralCrossRefGoogle Scholar
  96. Podobnik B, Fu DF, Stanley HE, Ivanov P (2007) Power-law autocorrelated stochastic processes with long-range cross-correlations. Eur Phys J B 56:47–52CrossRefGoogle Scholar
  97. Podobnik B, Grosse I, Horvatic D, Ilic S, Ivanov P et al (2009) Quantifying cross-correlations using local and global detrending approaches. Eur Phys J B 71:243–250CrossRefGoogle Scholar
  98. Podobnik B, Jiang ZQ, Zhou WX, Stanley HE (2011) Statistical tests for power-law cross-correlated processes. Phys Rev E 84:066118CrossRefGoogle Scholar
  99. Pompe B, Blidh P, Hoyer D, Eiselt M (1998) Using mutual information to measure coupling in the cardiorespiratory system. IEEE Eng Med Biol Mag 17:32–39PubMedCrossRefGoogle Scholar
  100. Porta A, Bassani T, Bari V, Tobaldini E, Takahashi ACM et al (2012) Model-based assessment of baroreflex and cardiopulmonary couplings during graded head-up tilt. Comput Biol Med 42:298–305PubMedCrossRefGoogle Scholar
  101. Pujitha K, Parvathi G, Sekhar KM (2014) Postural changes in heart rate and blood pressure with ageing. Int J Physiother Res 2:751–756CrossRefGoogle Scholar
  102. Pump B, Christensen NJ, Vidbaek R, Warberg J, Hendriksen O et al (1997) Left atrial distension and antiorthostatic decrease in arterial pressure and heart rate in humans. Am J Physiol Heart Circ Physiol 273:H2632–H2638CrossRefGoogle Scholar
  103. Pump B, Gabrielsen A, Christensen NJ, Bie P, Bestle M et al (1999) Mechanisms of inhibition of vasopressin release during moderate antiorthostatic posture change in humans. Am J Phys Regul Integr Comp Phys 277:R229–R235Google Scholar
  104. Pump B, Kamo T, Gabrielsen A, Norsk P (2001) Mechanisms of hypotensive effects of a posture change from seated to supine in humans. Acta Physiol Scand 171:405–412PubMedCrossRefGoogle Scholar
  105. Qian XY, Liu YM, Jiang ZQ, Podobnik B, Zhou WX et al (2015) Detrended partial cross-correlation analysis of two nonstationary time series influenced by common external forces. Phys Rev E 91:062816CrossRefGoogle Scholar
  106. Radelli A, Bernardi l, Valle F, Leuzzi S, Salvucci F et al (1994) Cardiovascular autonomic modulation in essential hypertension effect of tilting. Hypertension 24:556–563CrossRefGoogle Scholar
  107. Richman JS, Moorman JR (2000) Physiological time-series analysis using approximate entropy and sample entropy. Am J Phys Heart Circ Phys 278:H2039–H2049Google Scholar
  108. Ritzenberg AL, Adam DR, Cohen RJ (1984) Period multupling – evidence for non-linear behaviour of the canine heart. Nature 307:159–161PubMedCrossRefGoogle Scholar
  109. Saul JP, Berger RD, Albrecht P, Stein SP, Chen MH et al (1991) Transfer function analysis of the circulation: unique insights into cardiovascular regulation. Am J Phys 261:H1231–H1245Google Scholar
  110. Schwab K, Eiselt M, Putsche P, Helbig M, Witte H (2006) Time-variant parametric estimation of transient quadratic phase couplings between heart rate components in healthy neonates. Med Biol Eng Comput 44:1077–1083PubMedCrossRefGoogle Scholar
  111. Sela R, Hurvich C (2012) The average periodogram estimator for a power law in coherency. J Time Ser Anal 33:340–363CrossRefGoogle Scholar
  112. Shoemaker JK, Hogeman CS, Khan M, Kimmerly DS, Sinoway LI (2001) Gender affects sympathetic and hemodynamic response to postural stress. Am J Physiol Heart Circ Physiol 281:H2028–H2035PubMedCrossRefGoogle Scholar
  113. Sornmo L, Laguna P (2005) Bioelectrical signal processing in cardiac and neurological application. Elsevier Academic Press, AmsterdamGoogle Scholar
  114. Souza d AC, Cisternas JR, Abreu d LC, Roque AL, Monteiro CBM et al (2014) Fractal correlation property of heart rate variability in response to the postural change maneuver in healthy women. Int Arch Med 7:25–31PubMedPubMedCentralCrossRefGoogle Scholar
  115. Špulák D, Čmejla R, Fabián V (2010) Experiments with blood pressure monitoring using ECG and PPG. In: Proceedings of the conference technical computing Bratislava, pp 1–5Google Scholar
  116. Thayer JF, Yamamoto SS, Brosschot JF (2010) The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors. Int J Cardiol 141:122–131PubMedCrossRefGoogle Scholar
  117. Thayer JF, Åhs F, Fredrikson M, Sollers JJ III, Wagere TD (2012) A meta-analysis of heart rate variability and neuroimaging studies: implications for heart rate variability as a marker of stress and health. Neurosci Biobehav Rev 36:747–756PubMedCrossRefGoogle Scholar
  118. Tonhajzerov I, Javorka K, Javorka M, Petrásková M (2002) Cardiovascular autonomic nervous system tests: reference values in young people (15-19 years) and influence of age and gender. Clin Physiol Funct Imaging 22:398–403CrossRefGoogle Scholar
  119. Tseng L, Tang S-C, Chang C-Y, Lin Y-C, Abbod MF et al (2013) Non-linear and conventional biosignal analyses applied to tilt table test for evaluating autonomic nervous system and autoregulation. Open Biomed Eng J 7:93–99PubMedPubMedCentralCrossRefGoogle Scholar
  120. Tulppo MP, Mäkikallio TH, Takala TE, Seppänen T, Huikuri HV (1996) Quantitative beat-to-beat analysis of heart rate dynamics during exercise. Am J Physiol Heart Circ Physiol 271:H244–H252CrossRefGoogle Scholar
  121. Tulppo MP, Mäkikallio TH, Seppänen T, Laukkanen RT, Huikuri HV (1998) Vagal modulation of heart rate during exercise: effects of age and physical fitness. Am J Physiol Heart Circ Physiol 274:H424–H429CrossRefGoogle Scholar
  122. Tulppo MP, Kiviniemi AM, Hautala AJ, Kallio M, Seppänen T et al (2005) Physiological background of the loss of fractal heart rate dynamics. Circulation 112:314–319PubMedCrossRefGoogle Scholar
  123. Tuzcu V, Nas S, Borklu T, Ugur A (2006) Decrease in the heart rate complexity prior to the onset of a trial fibrillation. Europace 8:398–402PubMedCrossRefGoogle Scholar
  124. Valenza G, Garcia RG, Citi L, Scilingo EP, Tomaz CA et al (2015) Non-linear digital signal processing in mental health: characterization of major depression using instantaneous entropy measures of heartbeat dynamics. Front Physiol 6:74PubMedPubMedCentralCrossRefGoogle Scholar
  125. Voss A, Schulz S, Schroeder R, Baumert M, Caminal P (2009) Methods derived from non-linear dynamics for analysing heart rate variability. Philos Trans R Soc Am 367:277–296CrossRefGoogle Scholar
  126. Wang GJ, Xie C (2012) Cross-correlations between WTI crude oil market and US stock market: a perspective from econophysics. Acta Phys Pol B 43:2021–2036CrossRefGoogle Scholar
  127. Wang F, Liao G, Zhou X, Shi W (2013) Multifractal detrended cross-correlation analysis for power markets. Non Linear Dyn 72:353–363CrossRefGoogle Scholar
  128. Ward M, ChB MB, Langton JA (2007) Blood pressure measurement. Medscape, 2007Google Scholar
  129. Winter DA, Prince F, Frank JS, Powell C, Zabjek KF (1996) Unified theory regarding A/P and M/L balance in quiet stance. J Neurophysiol 75:2334–2343PubMedCrossRefGoogle Scholar
  130. Yamamoto Y, Hughson RL (1991) Coarse-graining spectral analysis: new method for studying heart rate variability. J Appl Physiol 71:1143–1150PubMedCrossRefGoogle Scholar
  131. Zamponi N, Passamonti C, Cesaroni E, Trignani R, Rychlicki F (2011) Effectiveness of vagal nerve stimulation (VNS) in patients with drop-attacks and different epileptic syndromes. Seizure 20:468–474PubMedCrossRefGoogle Scholar
  132. Zhao X, Shang P, Jin Q (2011) Multifractal detrended cross-correlation analysis of Chinese stock markets based on time delay. Fractals 19:329–338CrossRefGoogle Scholar
  133. Zhou WX (2008) Multifractal detrended cross-correlation analysis for two nonstationary signals. Phys Rev E 77:066211CrossRefGoogle Scholar
  134. Ziegler D (1994) Diabetic cardiovascular autonomic neuropathy: prognosis, diagnosis and treatment. Diabetes Metab Rev 10:339–383PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Dipak Ghosh
    • 1
  • Shukla Samanta
    • 2
  • Sayantan Chakraborty
    • 3
  1. 1.Department of PhysicsSir C V Raman Centre for Physics and Music, Jadavpur UniversityKolkataIndia
  2. 2.Department for PhysicsSeacom Engineering CollegeHowrahIndia
  3. 3.Electrical and Electronics EngineeringICFAI UniversityAgartalaIndia

Personalised recommendations