Advertisement

Integration and Scheduling of Core Modules

  • Wenfeng WangEmail author
  • Xiangyang Deng
  • Liang Ding
  • Limin Zhang
Chapter
Part of the Research on Intelligent Manufacturing book series (REINMA)

Abstract

In this chapter, a theoretical framework of brain-inspired intelligence is finally established in synergetical implementation of the vision–brain, including the geospatial modeling (seen), the robotic integrated intelligence (understanding) and the brain-inspired decision system (response). For a better interpretation of these core modules and for the convenience of readers’ understanding, the planetary exploration wheeled mobile robot is employed as an example and double-layer human–machine interfaces are utilized to display how the vision–brain will function in the future. Based on the vision–brain hypothesis and the results of Chaps.  3 and  4, in order to solve a robot path-planning problem and decide an optimal path to the targets or regions of interest, obstacle avoidance through a geospatial modeling is essentially necessary. Scheduling of core modules can be further interpreted as a hierarchical cooperation process of the vision–brain with other technological modules. Alternatively, the architecture of a vision–brain can be interpreted as three-layer intelligence—seen, understanding and response. Such multilayer architecture of brain-inspired intelligence makes a better chance for extending related technologies, supporting the R&D of tele-operated machine intelligence, and has a universal significance for any future intelligent systems, especially for improving the cognition efficiency and robustness of a machine brain through a scene understanding.

References

  1. 1.
  2. 2.
    JPL, NASA/JPL Mars Pathfinder. [Online]. Available: http://marsprogram.jpl.nasa.gov/MPF/
  3. 3.
    JPL, NASA/JPL Mars Exploration Rover Mission. [Online]. Available: http://marsrovers.jpl.nasa.gov/home/index.html
  4. 4.
    S.W. Squyres, A.H. Knoll, R.E. Arvidson et al., Exploration of Victoria crater by the Mars rover opportunity. Science 324(5930), 1058–1061 (2009)Google Scholar
  5. 5.
    S.W. Squyres, R.E. Arvidson, J.F. Bell III et al., The Spirit rover’s Athena science investigation at Gusev Crater, Mars. Science 305(5685), 794–799 (2004)Google Scholar
  6. 6.
    JPL, Mars Science Laboratory–Curiosity: NASA’s next Mars rover. [Online]. Available: http://www.nasa.gov/mission_pages/msl/
  7. 7.
    ESA, ExoMars Mission. [Online]. Available: http://www.esa.int/SPECIALS/ExoMars/SEM10VLPQ5F_0.html
  8. 8.
    Z.Z. Sun, Y. Jia, H. Zhang, Technological advancements and promotion roles of Chang’e-3 lunar probe mission. Sci. China Tech. Sci. 56(11), 2702–2708 (2013)Google Scholar
  9. 9.
    JAXA. Moon lander SELENE 2. [Online]. Available: http://www.jspec.jaxa.jp/e/activity/selene2.html
  10. 10.
    NASA, Solar System exploration–the 2006 Solar System exploration roadmap for NASA’s science mission directorate. [Online]. Available: http://www.lpi.usra.edu/vexag/road_map_final.pdf (2006, Sept)
  11. 11.
    S. Hayati, R. Volpe, P. Backes et al., in The Rocky 7 Rover: A Mars Sciencecraft Prototype. Proceedings of the IEEE International Conference on Robotics and Automation (IEEE, Albuquerque, NM, USA, 1997), pp. 2458–2464Google Scholar
  12. 12.
    Y. Zheng, Z. Ouyang, C. Li et al., China’s Lunar Exploration Program: present and future. Planet. Space Sci. 56(7), 881–886 (2008)Google Scholar
  13. 13.
    M. Maimone, J. Biesiadecki, E. Tunstel et al., Surface navigation and mobility intelligence on the Mars exploration rovers, in Intelligence for Space Robotics, ed. by A.M. Howard, E.W. Tunstel (TX, USA, San Antonio, 2006)Google Scholar
  14. 14.
    M. Bajracharya, M.W. Maimone, D. Helmick, Autonomy for Mars rovers: past, present, and future. Computer 41(12), 44–50 (2008)Google Scholar
  15. 15.
    M.W. Maimone, P.C. Leger, J.J. Biesiadecki, in Overview of the Mars exploration rovers’ autonomous mobility and vision capabilities. Proceedings of the 2007 IEEE International Conference on Robotics and Automation, Space Robotics Workshop. Roma, Italy, 2007Google Scholar
  16. 16.
    A. Montferrer, D. Bonyuet, Cooperative robot teleoperation through virtual reality interfaces, in Proceedings of the Sixth International Conference on Information Visualization (2002), pp. 243–248Google Scholar
  17. 17.
    P.G. Backes, G.K. Tharp, K.S. Tso, in The Web Interface for Telescience (WITS). Proceedings of the IEEE International Conference on Robotics and Automation (IEEE, Albuquerque, NM, USA, 1997), pp. 411–417Google Scholar
  18. 18.
    J.R. Wright, F.R. Hartman, B.K. Cooper et al., Driving on Mars with RSVP: building safe and effective command sequences. IEEE Robot. Autom. Mag. 13(2), 37–45 (2006)Google Scholar
  19. 19.
    K. Young, Mars rover escapes from the “Bay of Lamentation”. 2006. [Online]. Available: http://www.newscientist.com/article/dn9286-mars-rover-escapes-from-the-bay-of-lamentation.html
  20. 20.
    L. Ding, H.B. Gao, Z.Q. Deng et al., in Design of Comprehensive High-Fidelity/High-Speed Virtual Simulation System for Lunar Rover. Proceedings of IEEE Conference on Robotics, Automation and Mechatronics. Chengdu, China, 2008Google Scholar
  21. 21.
    D. Dvorak, G. Bollella, T. Canham et al., in Project Golden Gate: Towards Real-Time Java in Space Missions. Proceedings of the Seventh IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (IEEE, Vienna, Austria, 2004), pp. 15–22Google Scholar
  22. 22.
    JPL, Mars exploration rovers objectives. [Online]. Available: http://marsrover.nasa.gov/science/objectives.html
  23. 23.
    JPL, Mars Science Laboratory contribution to Mars Exploration Program science goals, [Online]. Available: http://mars.jpl.nasa.gov/msl/mission/science/goals/
  24. 24.
    ESA, Scientific objectives of the ExoMars Rover, [Online]. Available: http://exploration.esa.int/science-e/www/object/index.cfm?fobjectid=45082
  25. 25.
    C.R. Neal, The Moon 35 years after Apollo: what’s left to learn? Chem. Erde-Geochem 69(1), 3–43 (2009)Google Scholar
  26. 26.
    S. Tanaka, T. Mitani, Y. Iijima et al., The Science Objectives of Japanese Lunar Lander Project SELENE-II. Proceedings of the 42nd Lunar and Planetary Science Conference. The Woodlands, TX, USA, 2011Google Scholar
  27. 27.
    D.F. Blake, R.V. Morris, G. Kocurek et al., Curiosity at Gale Crater, Mars: characterization and analysis of the rocknest sand shadow. Science 341(6153), 1239505 (2013)Google Scholar
  28. 28.
    Wikipedia, Curiosity (rover). [Online]. Available: http://en.wikipedia.org/wiki/Curiosity_(rover)#cite_note-MSLUSAToday-16
  29. 29.
    Harbin Institute of Technology (HIT), The Lunar Rover prototype exhibited in Zhuhai Airshow, the locomotion system of which was developed by HIT. 2006. [Online]. Available: http://today.hit.edu.cn/articles/2006/11-08/11132413.htm
  30. 30.
    E. Baumgartner E, Bonitz R, Melko J, et al., in The Mars Exploration Rover Instrument Positioning System. Proceedings of the 2005 IEEE Aerospace Conference (IEEE, Big Sky, MT, USA, 2005), pp. 1–19Google Scholar
  31. 31.
    C.C. Leger, A. Trebi-Ollennu, J.R. Wright et al., Mars Exploration Rover Surface Operations: Driving Spirit at Gusev Crater. Proceedings of the 2005 IEEE International Conference on Systems, Man and Cybernetics (IEEE, Big Sky, MT, USA, 2005), pp. 1815–1822Google Scholar
  32. 32.
    JPL, MSL Science corner. [Online]. Available: http://msl-scicorner.jpl.nasa.gov/
  33. 33.
    R. Volpe, I. Nesnas, T. Estlin et al., in The CLARAty architecture for robotic autonomy. Proceedings of the IEEE Aerospace Conference (IEEE, Big Sky, MT, USA, 2001), pp. 1121–1132Google Scholar
  34. 34.
    I.A.D. Nesnas, S. Reid, G. Danie et al., CLARAty: Challenges and steps toward reusable robotic software. Int. J. Adv. Robot Syst. 3(1), 23–30 (2006)Google Scholar
  35. 35.
    F.R. Hartman, B. Cooper, C. Leger et al., in Data Visualization for Effective rover Sequencing. Proceedings of the 2005 IEEE Aerospace Conference (IEEE, Big Sky, MT, USA, 2005), pp. 1378–1383Google Scholar
  36. 36.
    J. Yen, A. Jain, J. Balaram, in ROAMS: Rover Analysis Modeling and Simulation Software. Proceedings of the International Symposium on Artificial Intelligence, Robotics and Automation in Space (ESTEC, Noordwijk, The Netherlands, 1999)Google Scholar
  37. 37.
    R. Volpe, in Rover Functional Autonomy Development for the Mars Mobile Science Laboratory. Proceedings of the IEEE Aerospace Conference (IEEE, Big Sky, Montana, USA, 2003), pp. 643–652Google Scholar
  38. 38.
    M.P. Golombek, R.C. Anderson, J.R. Barnes, Overview of the Mars Pathfinder mission: launch through landing, surface operations, data sheets, and science results. J. Geophys. Res. 104(E4), 8523–8553 (1999)Google Scholar
  39. 39.
    V.M. Richard, W.R. Steven, G. Ralf et al., Identification of Carbonate-rich outcrops on Mars by the Spirit rover. Science 329(5990), 421–424 (2010)Google Scholar
  40. 40.
    S.W. Squyres, A.H. Knoll, R.E. Arvidson et al., Two years at Meridiani Planum: results from the Opportunity rover. Science 313(1403), 1403–1407 (2006)Google Scholar
  41. 41.
    K.E. Herkenhoff, S.W. Squyres, R.E. Arvidson et al., Evidence from Opportunity’s Microscopic imager for water on Meridiani Planum. Science 306(5702), 1727–1730 (2004)Google Scholar
  42. 42.
    J.F. Bell III, S.W. Squyres, R.E. Arvidson et al., Pancam multispectral imaging results from the Spirit Rover at Gusev Crater. Science 305(5685), 800–806 (2004)Google Scholar
  43. 43.
    M.P. Golombek, R.E. Arvidson, J.F. Bell III et al., Assessment of Mars exploration rover landing site predictions. Nature 436, 44–48 (2005)Google Scholar
  44. 44.
    Rover Team, Characterization of the Martian surface deposits by the Mars Pathfinder rover, Sojourner. Science 278(5344), 1765–1767 (1997)Google Scholar
  45. 45.
    R.L. Fergason, P.R. Christensen, J.F. Bell III et al., Physical properties of the Mars Exploration Rover landing sites as inferred from Mini-TES-derived thermal inertia. J. Geophys. Res. 111(2) (2006)Google Scholar
  46. 46.
    R.E. Arvidson, R.C. Anderson, J.F. Bell III et al., Localization and physical properties experiments conducted by Opportunity at Meridiani Planum. Science 306(5702), 1730–1733 (2004)Google Scholar
  47. 47.
    R.E. Arvidson, R.C. Anderson, P. Bartlett et al., Localization and physical properties experiments conducted by Spirit at Gusev Crater. Science 305(5685), 821–824 (2004)Google Scholar
  48. 48.
    J.J. Biesiadecki, E.T. Baumgartner, R.G. Bonitz et al., Mars Exploration Rover surface operations: driving Opportunity at Meridiani Planum. IEEE Robot. Autom. Mag. 13(2), 63–71 (2006)Google Scholar
  49. 49.
  50. 50.
    R. Alami, R. Chatila, S. Fleury et al., An architecture for autonomy. Int. J. Robot. Res. 17(4), 315–337 (1998)Google Scholar
  51. 51.
    T. Estlin, D. Gaines, B. Bornstein et al., in Supporting increased autonomy for a Mars rover. Proceedings of the International Symposium on Artificial Intelligence, Robotics and Automation in Space. Hollywood, USA, 2008Google Scholar
  52. 52.
    F. Ingrand, S. Lacroix, S. Lemai-Chenevier et al., Decisional autonomy of planetary rovers. J. Field Robot. 24(7), 559–580 (2007)Google Scholar
  53. 53.
    R. Volpe, I. Nesnas, T. Estlin et al., CLARAty: Coupled Layer Architecture for Robotic Autonomy. NASA, Jet Propulsion Laboratory, Pasadena, CA, USA, Technical Report D–19975, 2000Google Scholar
  54. 54.
    D. Lutz, New Mars rover’s mechanics to be used to study Martian soil properties. [Online]. Available: http://news.wustl.edu/news/pages/23139.aspx (2012)
  55. 55.
    K. Iagnemma, Terrain estimation methods for enhanced autonomous rover mobility, in Intelligence for Space Robotics, ed. by A.M. Howard, E.W. Tunstel (TX, USA, San Antonio, 2006)Google Scholar
  56. 56.
    K. Iagnemma, S. Kang, H. Shibly et al., Online terrain parameter estimation for wheeled mobile robots with application to planetary rovers. IEEE Trans. Robot. 20(5), 921–927 (2004)Google Scholar
  57. 57.
    L.E. Ray, Estimation of terrain forces and parameters for rigid-wheeled vehicles. IEEE Trans. Robot. 25(3), 717–726 (2009)Google Scholar
  58. 58.
    L. Ding, K. Yoshida, K. Nagatani et al., Parameter Identification for Planetary Soil Based on a Decoupled Analytical Wheel–Soil Interaction Terramechanics Model. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, St. Louis, MO, USA, 2009), pp. 4122–4127Google Scholar
  59. 59.
    L. Ding, H. Gao, Z. Deng et al., An approach of identifying mechanical parameters for lunar soil based on integrated wheel–soil interaction terramechanics model of rovers (in Chinese). Acta Aeronaut. Astronaut. Sin. 32(6), 1112–1123 (2011)Google Scholar
  60. 60.
    L. Ojeda, D. Cruz, G. Reina et al., Current-based slippage detection and odometry correction for mobile robots and planetary rovers. IEEE Trans. Robot. 22(2), 366–378 (2006)Google Scholar
  61. 61.
    D. Dumond, Terrain classification using proprioceptive sensors. Ph.D. dissertation, Thayer School of Engineering, Dartmouth College, Hanover, NH, USA, 2011Google Scholar
  62. 62.
    C.A. Brooks, K. Iagnemma, Vibration-based terrain classification for planetary exploration rovers. IEEE Trans. Robot. 21(6), 1185–1191 (2005)Google Scholar
  63. 63.
    A. Angelova, L. Matthies, D. Helmick et al., Learning and prediction of slip from visual information. J. Field Robot. 24(3), 205–231 (2007)Google Scholar
  64. 64.
    J.J. Leonard, H.F. Durrant-Whyte, in Simultaneous map building and localization for an autonomous mobile robot. Proceedings of the IEEE/RSJ International Workshop on Intelligent Robots and Systems (IEEE, Osaka, Japan, 1991), 1442–1447Google Scholar
  65. 65.
    H.F. Durrant-Whyte, T. Bailey, Simultaneous localization and mapping: part I. IEEE Robot. Autom. Mag. 13(2), 99–110 (2006)Google Scholar
  66. 66.
    M.W.M.G. Dissanayake, P. Newman, S. Clark et al., A solution to the simultaneous localisation and map building (SLAM) problem. IEEE Trans. Robot. Autom. 17(3), 229–241 (2006)Google Scholar
  67. 67.
    A.J. Davison, N. Kita, in 3D Simultaneous Localization and Map-Building Using Active Vision for a Robot Moving on Undulating Terrain. Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE, Kauai, HI, USA, 2011)Google Scholar
  68. 68.
    A.J. Davison, in Real-TIME Simultaneous Localisation and Mapping with a Single Camera. Proceedings of the Ninth IEEE International Conference on Computer Vision, pp. 384–391. Nice, France, 2003Google Scholar
  69. 69.
    L. Matthies, M. Maimone, A. Johnson et al., Computer vision on Mars. Int. J. Comput. Vision 75(1), 67–92 (2007)Google Scholar
  70. 70.
    Y. Cheng, M.W. Maimone, L. Matthies, Visual odometry on the Mars exploration rovers-a tool to ensure accurate driving and science imaging. IEEE Robot. Autom. Mag. 13(2), 54–62 (2006)Google Scholar
  71. 71.
    M. Maimone, Y. Cheng, L. Matthies, Two years of Visual Odometry on the Mars Exploration Rovers. J. Field Robot. 24(3), 169–186 (2007)Google Scholar
  72. 72.
    C.A. Brooks, K. Iagnemma, Self-supervised terrain classification for planetary surface exploration rovers. J. Field Robot. 29(3), 445–468 (2012)Google Scholar
  73. 73.
    L. Ojeda, J. Borenstein, G. Witus et al., Terrain characterization and classification with a mobile robot. J. Field Robot. 23(2), 103–122 (2006)zbMATHGoogle Scholar
  74. 74.
    D.B. Gennery, Traversability analysis and path planning for a planetary rover. Auton. Robots 6(2), 131–146 (1999)Google Scholar
  75. 75.
    S. Lacroix, A. Mallet, D. Bonnafous, Autonomous rover navigation on unknown terrains: functions and integration. Int. J. Robot. Res. 21(10–11), 917–942 (2002)Google Scholar
  76. 76.
    S. Chhaniyara, C. Brunskill, B. Yeomans et al., Terrain trafficability analysis and soil mechanical property identification for planetary rovers: a survey. J. Terramech. 49(2), 115–128 (2012)Google Scholar
  77. 77.
    K. Iagnemma, F. Genot, S. Dubowsky, in Rapid Physics-Based Rough-Terrain Rover Planning with Sensor and Control Uncertainty. Proceedings of IEEE International Conference on Robotics and Automation. Detroit, MI, USA, 1999Google Scholar
  78. 78.
    G. Ishigami, K. Nagatani, K. Yoshida, in Path Planning for Planetary Exploration Rovers and Its Evaluation Based on Wheel Slip Dynamics. Proceedings of the IEEE International Conference on Robotics and Automation (IEEE, Roma, Italy, 2007), pp. 2361–2366Google Scholar
  79. 79.
    T.M. Howard, A. Kelly, Optimal rough terrain trajectory generation for wheeled mobile robots. Int. J. Robot. Res. 26(2), 141–166 (2007)Google Scholar
  80. 80.
    J.H. Kim, Y.H. Kim, S.H. Choi et al., Evolutionary multi-objective optimization in robot soccer system for education. IEEE Comput. Intell. Mag. 4(1), 31–41 (2009)Google Scholar
  81. 81.
    M. Tarokh, Hybrid intelligent path planning for articulated rovers in rough terrain. Fuzzy Set Syst. 159(21), 2927–2937 (2008)MathSciNetGoogle Scholar
  82. 82.
    N. Noguchi, H. Terao, Path planning of an agricultural mobile robot by neural network and genetic allgorithm. Comput. Electron. Agr. 18(2–3), 187–204 (1997)Google Scholar
  83. 83.
    I. Kolmanovsky, N.H. McClamroch, Development in nonholonomic control problems. IEEE Contr. Syst. Mag. 15(6), 20–36 (1995)Google Scholar
  84. 84.
    P. Morin, C. Samson, Control of nonholonomic mobile robots based on the transverse function approach. IEEE Trans. Robot. 25(5), 1058–1073 (2009)Google Scholar
  85. 85.
    K. Iagnemma, H. Shibly, A. Rzepniewski et al., Planning and Control Algorithms for Enhanced Rough-Terrain Rover Mobility. Proceedings of the 6th International Symposium on Artificial Intelligence and Robotics & Automation in Space. St-Hubert, Quebec, Canada, 2001Google Scholar
  86. 86.
    G. Ishigami, A. Miwa, K. Nagatani, K. Yoshida, Terramechanics-based model for steering maneuver of planetary exploration rovers on loose soil. J. Field Robot. 24(3), 233–250 (2007)Google Scholar
  87. 87.
    L. Ding, H.B. Gao, Z.Q. Deng et al., Path-following control of wheeled planetary exploration robots moving on deformable rough terrain. Sci. World J. Article ID 793526 (2014). http://dx.doi.org/10.1155/2014/793526
  88. 88.
    D.M. Helmick, Y. Cheng, D. Clouse et al., in Path following using visual odometry for a Mars rover in high-slip environments. Proceedings of the IEEE Aerospace Conference (IEEE, Big Sky, MT, USA, 2004), pp. 772–789Google Scholar
  89. 89.
    D.M. Helmick, S.I. Roumeliotis, Y. Cheng et al., Slip-compensated path following for planetary exploration rovers. Adv. Robot. 20(11), 1257–1280 (2006)Google Scholar
  90. 90.
    G. Ishigami, K. Nagatani, K. Yoshida, in Path following control with slip compensation on loose soil for exploration rover. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, Beijing, China, 2006), pp. 5552–5557Google Scholar
  91. 91.
    L. Ding, H.B. Gao, Z.Q. Deng et al., Slip-Ratio-Coordinated Control of Planetary Exploration Robots Traversing over Deformable Rough Terrain. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, Taipei, China, 2010), pp. 4958–4963Google Scholar
  92. 92.
    L. Ding, Wheel–soil interaction terramechanics for lunar/planetary exploration rovers: modeling and application (in Chinese). Ph.D. thesis, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, China, 2009Google Scholar
  93. 93.
    K. Xia, Research on tracking control of mobile robot based on wheel–soil interaction modeling (in Chinese). Master dissertation, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, China, 2009Google Scholar
  94. 94.
    D.W. Wang, C.B. Low, Modeling and analysis of skidding and slipping in wheeled mobile robots: control design perspective. IEEE Trans. Robot. 24(3), 676–687 (2008)Google Scholar
  95. 95.
    L. Ding, H.B. Gao, J.L. Guo et al., in Terramechanics-Based Analysis of Slipping and Skidding for Wheeled Mobile Robots. Proceedings of the 31st Chinese Control Conference (IEEE, Heifei, China, 2012), pp. 4966–4973Google Scholar
  96. 96.
    L. Ding, H.B. Gao, Z.Q. Deng et al., Advances in simulation of planetary wheeled mobile robots, in Mobile Robots-Current Trends, ed. by Z. Gacovski (InTech Press, Rijeka, Croatia, 2011), pp. 375–402Google Scholar
  97. 97.
    J. Yen, A. Jain, J. Balaram, in ROAMS: Rover Analysis Modeling and Simulation Software. Proceedings of the International Symposium on Artificial Intelligence, Robotics and Automation in Space (ESTEC, Noordwijk, The Netherlands, 1999)Google Scholar
  98. 98.
    T. Estlin, D. Gaines, B. Bornstein et al., in Supporting Increased Autonomy for a Mars Rover. Proceedings of the International Symposium on Artificial Intelligence, Robotics and Automation in Space. Hollywood, USA, 2008Google Scholar
  99. 99.
    F. Zhou, R.E. Arvidson, K. Bennett et al., Simulations of Mars rover traverses. J. Field Robot. 31(1), 141–160 (2014)Google Scholar
  100. 100.
    B. Schäfer, A. Gibbesch, R. Krenn et al., Planetary rover mobility simulation on soft and uneven terrain. Vehicle Syst. Dyn. 48(1), 149–169 (2010)Google Scholar
  101. 101.
    L. Ding, K. Nagatani, K. Sato et al., in Terramechanics-Based High-Fidelity Dynamics Simulation for Wheeled Mobile Robot on Deformable Rough Terrain. Proceedings of the IEEE International Conference on Robotics and Automation (IEEE, Anchorage, Alaska, USA, 2010), pp. 4922–4927Google Scholar
  102. 102.
    J. Wright, F.R. Hartman, B. Cooper et al., in Terrain Modeling for Immersive Visualization for the Mars Exploration Rovers. Proceedings of the SpaceOps. Montreal, Canada, 2004Google Scholar
  103. 103.
    P.C. Leger, R.G. Deen, R.G. Bonitz, in Remote Image Analysis for Mars Exploration Rover Mobility and Manipulation Operations. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics (IEEE, Hawaii, USA, 2005), pp. 917–922Google Scholar
  104. 104.
    A.D. Griffiths, A.J. Coates, R. Jaumann et al., Context for the ESA ExoMars rover: the Panoramic Camera (PanCam) instrument. Int. J. Astrobiol. 5(3), 269–275 (2006)Google Scholar
  105. 105.
    I. Rekleitis, J. Bedwani, E. Dupuis, in Autonomous Planetary Exploration Using LiDAR Data. Proceedings of the IEEE International Conference on Robotics and Automation (IEEE, Kobe, Japan, 2009), pp. 3025–3030Google Scholar
  106. 106.
    P.J.F. Carle, P.T. Furgale, T.D. Barfoot, Long-range rover localization by matching LIDAR scans to orbital elevation maps. J. Field Robot. 27(3), 344–370 (2010)Google Scholar
  107. 107.
    K. Yoshida, The SpaceDyn: a MATLAB toolbox for space and mobile robots. JRM 12(4), 411–416 (2000)Google Scholar
  108. 108.
    L. Ding, Z.Q. Deng, H.B. Gao et al., Experimental study and analysis of the wheels’ steering mechanics for planetary exploration WMRs moving on deformable terrain. Int. J. Robot. Res. 32(6), 712–743 (2013)Google Scholar
  109. 109.
    M.G. Bekker, Introduction to Terrain-Vehicle (The University of Michigan Press, Ann Arbor, MI, USA, 1969)Google Scholar
  110. 110.
    J.Y. Wong, Terramechanics and Off-Road Vehicle Engineering, 2nd edn (Elsevier, 2010)Google Scholar
  111. 111.
    L. Ding, Z.Q. Deng, H.B. Gao et al., Planetary rovers’ wheel–soil interaction mechanics: new challenges and applications for wheeled mobile robots. Intell. Serv. Robot. 4(1), 17–38 (2011)Google Scholar
  112. 112.
    L. Ding, H.B. Gao, Z.Q. Deng et al., Experimental study and analysis on driving wheels’ performance for planetary exploration rovers moving in deformable soil. J. Terramech. 48(1), 27–45 (2010)Google Scholar
  113. 113.
    L. Ding, H.B. Gao, Z.Q. Deng et al., Wheel slip-sinkage and its prediction model of lunar rover. J. Cent. South Univ. Technol. 17(1), 129–135 (2010)Google Scholar
  114. 114.
    L. Ding, Z.Q. Deng, H.B. Gao et al., Interaction mechanics model for rigid driving wheels of planetary rovers moving on sandy terrain with consideration of multiple physical effects. J. Field Robot. (2014).  https://doi.org/10.1002/rob.21533Google Scholar
  115. 115.
    G. Meirion-Griffith, M. Spenko, A modified pressure–sinkage model for small, rigid wheels on deformable terrains. J. Terramech. 48(2), 149–155 (2011)Google Scholar
  116. 116.
    R.A. Irani, R.J. Bauer, A. Warkentin, A dynamic terramechanic model for small lightweight vehicles with rigid wheels and grousers operating in sandy soil. J. Terramech. 48(4), 307–318 (2011)Google Scholar
  117. 117.
    H.B. Gao, J.L. Guo, L. Ding et al., Longitudinal skid model for wheels of planetary exploration rovers based on terramechanics. J Terramech. 50(5), 327–343 (2013)Google Scholar
  118. 118.
    L. Ding, H.B. Gao, Z.Q. Deng et al., in Longitudinal Slip Versus Skid of Planetary Rovers’ Wheels Traversing on Deformable Slopes. IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2842–2848. Tokyo, Japan, 2013Google Scholar
  119. 119.
    H. Shibly, K. Iagnemma, S. Dubowsky, An equivalent soil mechanics formulation for rigid wheels in deformable terrain, with application to planetary exploration rovers. J. Terramech. 42(1), 1–13 (2005)Google Scholar
  120. 120.
    L. Ding, H.B. Gao, Y.K. Li et al., Improved explicit-form equations for estimating dynamic wheel sinkage and compaction resistance on deformable terrain. Mech. Mach. Theory 86, 235–264 (2015)Google Scholar
  121. 121.
    S.P. Guo, D.X. Li, Y.H. Meng et al., Task space control of free-floating space robots using constrained adaptive RBF-NTSM. Sci. China Technol. Sci. 57(4), 828–837 (2014)Google Scholar
  122. 122.
    H.C. Zhuang, H.B. Gao, Z.Q. Deng et al., A review of heavy-duty legged robots. Sci. China Technol. Sci. 57(2), 298–314 (2014)Google Scholar

Copyright information

© Huazhong University of Science and Technology Press, Wuhan and Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Wenfeng Wang
    • 1
    Email author
  • Xiangyang Deng
    • 2
  • Liang Ding
    • 3
  • Limin Zhang
    • 2
  1. 1.CNITECH, Chinese Academy of SciencesInstitute of Advanced Manufacturing TechnologyNingboChina
  2. 2.Naval Aeronautical UniversityYantaiChina
  3. 3.Harbin Institute of TechnologyHarbinChina

Personalised recommendations