Introduction of Brain Cognition

  • Wenfeng WangEmail author
  • Xiangyang Deng
  • Liang Ding
  • Limin Zhang
Part of the Research on Intelligent Manufacturing book series (REINMA)


This chapter analyzes brain mechanisms for launching the attention to video information, describes swarm intelligence to consciously and proactively implement these mechanisms and advances the concepts of “brain-inspired object detection” and “brain-inspired compressive tracking,” respectively. Algorithms for swarm intelligence are interpreted as an integration of deep learning with target impulse responses, defining the selected objects in videos for tracking as eigenobjects. Such swarm intelligence achieves the robustness, accuracy and speed simultaneously, as preliminarily validated on challenging data under the unmanned driving scene. Brain mechanisms for a selective cognition to locate eigenobjects and mechanism for the motion tracking are illustrated, taking detection and tracking of dangerous objects as an example. Based on the biological mechanisms, mechanisms for the eigenobjects detection and its motion tracking by brain-inspired robots are analyzed, along with a sketch of the scheme to implement biological mechanisms in integration models. The perspective applications of compressive tracking by brain-inspired robots are preliminarily discussed, and at the end of this chapter, the outline of this book is also presented.


  1. 1.
    J.W. Davis, A.M. Morison, D.D. Woods, An adaptive focus-of-attention model for video surveillance and monitoring. Mach. Vis. Appl. 18(1), 41–64 (2007)CrossRefGoogle Scholar
  2. 2.
    A. Borji, D.N. Sihite, L. Itti, Salient object detection: a benchmark. IEEE Trans. Image Process. 24(12), 5706–5722 (2015)MathSciNetCrossRefGoogle Scholar
  3. 3.
    H. Schneiderman, T. Kanade, Object detection using the statistics of parts. Int. J. Comput. Vision 56(3), 151–177 (2004)CrossRefGoogle Scholar
  4. 4.
    P. Felzenszwalb, R. Girshick, D. Mcallester et al., Visual object detection with deformable part models. Commun. ACM 56(9), 97–105 (2013)CrossRefGoogle Scholar
  5. 5.
    C. Papageorgiou, T. Poggio, A trainable system for object detection. Int. J. Comput. Vision 38(1), 15–33 (2000)zbMATHCrossRefGoogle Scholar
  6. 6.
    A. Torralba, Contextual priming for object detection. Int. J. Comput. Vision 53(2), 169–191 (2003)MathSciNetCrossRefGoogle Scholar
  7. 7.
    B. Leibe, A. Leonardis, B. Schiele, Robust object detection with interleaved categorization and segmentation. Int. J. Comput. Vision 77(1), 259–289 (2008)CrossRefGoogle Scholar
  8. 8.
    V. Ferrari, F. Jurie, C. Schmid, From images to shape models for object detection. Int. J. Comput. Vision 87(3), 284–303 (2010)CrossRefGoogle Scholar
  9. 9.
    H. Kirchner, S.J. Thorpe, Ultra-rapid object detection with saccadic eye movements: visual processing speed revisited. Vision Res. 46(11), 1762–1776 (2006)CrossRefGoogle Scholar
  10. 10.
    Z. Sun, G. Bebis, R. Miller, Object detection using feature subset selection. Pattern Recogn. 37(11), 2165–2176 (2004)CrossRefGoogle Scholar
  11. 11.
    J.L. Crespo, A. Faiña, R.J. Duro, An adaptive detection/attention mechanism for real time robot operation. Neurocomputing 72(4–6), 850–860 (2009)CrossRefGoogle Scholar
  12. 12.
    B. Webb, Swarm intelligence: from natural to artificial systems. Connection Sci. 14(2), 163–164 (2002)CrossRefGoogle Scholar
  13. 13.
    E. Bonabeau, C. Meyer, Swarm intelligence. A whole new way to think about business. Harvard Bus. Rev. 79(5), 106–114 (2001)Google Scholar
  14. 14.
    M. Dorigo, M. Birattari, C. Blum, Ant Colony Optimization and Swarm Intelligence, vol. 49(8). (Springer Verlag, 1995), pp. 767–771Google Scholar
  15. 15.
    S. Garnier, J. Gautrais, G. Theraulaz, The biological principles of swarm intelligence. Swarm Intell. 1(1), 3–31 (2007)CrossRefGoogle Scholar
  16. 16.
    M. Dorigo, M. Birattari, C. Blum, et al., in Ant Colony Optimization and Swarm Intelligence. 4th International Workshop, ANTS 2004, Brussels, Belgium, September 5–8, 2004. Lecture Notes in Computer Science, vol. 49(8). (2004), pp. 767–771Google Scholar
  17. 17.
    C.J. Wan, L.Q. Zhu, Y.H. Liu et al., Proton-conducting graphene oxide-coupled neuron transistors for brain-inspired cognitive systems. Adv. Mater. 28(3), 3557–3563 (2016)CrossRefGoogle Scholar
  18. 18.
    P. Gkoupidenis, D.A. Koutsouras, T. Lonjaret et al., Orientation selectivity in a multi-gated organic electrochemical transistor. Sci. Rep. 6, 27007 (2016)CrossRefGoogle Scholar
  19. 19.
    X. Liu, Y. Zeng, T. Zhang et al., Parallel brain simulator: a multi-scale and parallel brain-inspired neural network modeling and simulation platform. Cogn. Comput. 1–15 (2016)Google Scholar
  20. 20.
    R. Velik, A brain-inspired multimodal data mining approach for human activity recognition in elderly homes. J. Ambient Intell. Smart Environ. 6(4), 447–468 (2014)Google Scholar
  21. 21.
    J.J. Wong, S.Y. Cho, A brain-inspired framework for emotion recognition. Magn. Reson. Imaging 32(9), 1139–1155 (2006)Google Scholar
  22. 22.
    M. Masdari, F. Salehi, M. Jalali et al., A survey of PSO-based scheduling algorithms in cloud computing. J. Netw. Syst. Manage. 1–37 (2016)Google Scholar
  23. 23.
    Q. Qiu, Z. Li, K. Ahmed et al., A neuromorphic architecture for context aware text image recognition. J. Signal Process. Syst. 84(3), 355–369 (2016)CrossRefGoogle Scholar
  24. 24.
    J. Basiri, F. Taghiyareh, in Introducing a Socio-Inspired Swarm Intelligence Algorithm for Numerical Function Optimization. International Econference on Computer and Knowledge Engineering. (2014), pp. 462–467Google Scholar
  25. 25.
    H. Qiu, H. Duan, Y. Shi, A decoupling receding horizon search approach to agent routing and optical sensor tasking based on brain storm optimization. Optik—Int. J. Light Electron Opt. 126(7–8), 690–696 (2015)CrossRefGoogle Scholar
  26. 26.
    S. Luo, H. Xia, T. Yoshida et al., Toward collective intelligence of virtual communities: a primitive conceptual model. J. Syst. Sci. Syst. Eng. 18(2), 203–221 (2010)CrossRefGoogle Scholar
  27. 27.
    G. Rozenberg, T. Bäck, J.N. Kok, Handbook of natural computing. Kybernetes 40(3/4), 20–69 (2012)zbMATHGoogle Scholar
  28. 28.
    Z. Cao, X. Hei, L. Wang et al., An improved brain storm optimization with differential evolution strategy for applications of ANNs. Math. Probl. Eng. 2015(10), 1–18 (2015)Google Scholar
  29. 29.
    H. Xia, Z. Wang, S. Luo et al., in Toward a Concept of Community Intelligence: A View on Knowledge Sharing and Fusion in Web-Mediated Communities. IEEE International Conference on Systems, Man and Cybernetics. IEEE Xplore. (2008), pp. 88–93Google Scholar
  30. 30.
    S. Chawla, M. Manju, S. Singh, Computational intelligence techniques for wireless sensor network: review. Int. J. Comput. Appl. 118(14), 23–27 (2015)Google Scholar
  31. 31.
    J. Jiang, L. Zhang, Y. Wang, A brain-inspired face recognition framework. Int. Congr. 1291, 245–248 (2006)CrossRefGoogle Scholar
  32. 32.
    T. Morie, H. Miyamoto, A. Hanazawa, Brain-inspired visual processing for robust gesture recognition. Int. Congr. 1301, 31–34 (2007)CrossRefGoogle Scholar
  33. 33.
    G. Azzopardi, N. Petkov, COSFIRE: a brain-inspired approach to visual pattern recognition. Lect. Notes Comput. Sci. 8306, 76–87 (2014)CrossRefGoogle Scholar
  34. 34.
    Y. Zhang, Z.H. Zhou, Cost-sensitive face recognition. Computer Vision and Pattern Recognition, 2008 CVPR 2008. (2008), pp. 1–8Google Scholar
  35. 35.
    K. Zhang, L. Zhang, M.H. Yang, Real-Time Compressive Tracking. European Conference on Computer Vision. (2012), pp. 864–877CrossRefGoogle Scholar

Copyright information

© Huazhong University of Science and Technology Press, Wuhan and Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Wenfeng Wang
    • 1
    Email author
  • Xiangyang Deng
    • 2
  • Liang Ding
    • 3
  • Limin Zhang
    • 2
  1. 1.CNITECH, Chinese Academy of SciencesInstitute of Advanced Manufacturing TechnologyNingboChina
  2. 2.Naval Aeronautical UniversityYantaiChina
  3. 3.Harbin Institute of TechnologyHarbinChina

Personalised recommendations