Amyloid Neuropathy

  • Chi-Chao ChaoEmail author
  • Hung-Wei Kan
  • Ti-Yen Yeh
  • Ya-Yin Cheng
  • Sung-Tsang Hsieh


Amyloid neuropathy is a syndrome of peripheral nerve degeneration associated with deposition of amyloid attributed to various molecular compositions including (1) monoclonal protein of immunoglobulin light chain (AL amyloidosis) and (2) misfolded proteins produced by amyloid-prone genes, in particular, familial amyloid polyneuropathy (FAP) due to transthyretin (TTR) mutations. During the early stage of amyloid neuropathy, small fiber of the nociceptive type is frequently affected. Neuropathy of AL amyloidosis is a chronic hematological disorder. In addition to peripheral nerves, the kidney, liver, and heart are major organs of amyloid deposition resulting in diverse clinical presentations. In AL amyloidosis, progressive polyneuropathy is the most common neurological manifestations while mononeuropathy multiplex is also documented depending on the distribution of amyloid pathology. Since AL amyloidosis is due to B-cell dyscrasia, treatments include (1) a combination of prednisolone and chemotherapy (melphalan) and (2) target therapy of proteasome inhibitor (e.g., bortezomib). TTR-FAP is the most common genotype of FAP compared with other amyloid-producing genes (gelsolin and apolipoprotein A1). There are more than 100 mutations of TTR with variations in geographic and ethnic distributions. For example, V30M is the most common genotype and endemic in certain areas of Portugal and Japan. Small-fiber neuropathy is usually the initial presentation of FAP, including neuropathic pain, loss of protective sensation, and autonomic dysfunctions. Neurological deficits progress to affect large fibers leading to weakness of four limbs and unsteadiness, and many patients became ambulation-dependent or bedridden within a decade depending on the genotypes. In addition to liver transplantation which eliminates the major source of TTR-producing organ, new treatments have emerged that may slow the progression of neurological deficits; these include TTR stabilizers and RNA-based therapies. Hence to identify early biomarkers is the direction of research for slowing disease progression of FAP.


Amyloidosis β-pleated sheet Light chain immunoglobulin AL amyloidosis Primary systemic amyloidosis Plasma cell dyscrasia Chemotherapy Familial amyloid polyneuropathy (FAP) Familial amyloid cardiomyopathy (FAC) Transthyretin (TTR) Biomarkers Liver transplantation Transthyretin stabilizer Diflunisal Tafamidis RNA interference (RNAi) Antisense oligonucleotide 


  1. 1.
    Sipe JD, Benson MD, Buxbaum JN, Ikeda SI, Merlini G, Saraiva MJ, et al. Amyloid fibril proteins and amyloidosis: chemical identification and clinical classification International Society of Amyloidosis 2016 Nomenclature Guidelines. Amyloid. 2016;23:209–13.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Sunde M, Serpell LC, Bartlam M, Fraser PE, Pepys MB, Blake CC. Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J Mol Biol. 1997;273:729–39.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Sawaya MR, Sambashivan S, Nelson R, Ivanova MI, Sievers SA, Apostol MI, et al. Atomic structures of amyloid cross-beta spines reveal varied steric zippers. Nature. 2007;447:453–7.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Bonar L, Cohen AS, Skinner MM. Characterization of the amyloid fibril as a cross-beta protein. Proc Soc Exp Biol Med. 1969;131:1373–5.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Gillmore JD, Hawkins PN. Pathophysiology and treatment of systemic amyloidosis. Nat Rev Nephrol. 2013;9:574–86.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Wechalekar AD, Gillmore JD, Hawkins PN. Systemic amyloidosis. Lancet. 2016;387:2641–54.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Plante-Bordeneuve V, Said G. Familial amyloid polyneuropathy. Lancet Neurol. 2011;10:1086–97.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Testro AG, Brennan SO, Macdonell RA, Hawkins PN, Angus PW. Hereditary amyloidosis with progressive peripheral neuropathy associated with apolipoprotein AI Gly26Arg: outcome of hepatorenal transplantation. Liver Transpl. 2007;13:1028–31.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Rajkumar SV, Gertz MA, Kyle RA. Prognosis of patients with primary systemic amyloidosis who present with dominant neuropathy. Am J Med. 1998;104:232–7.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Gertz MA. Immunoglobulin light chain amyloidosis: 2016 update on diagnosis, prognosis, and treatment. Am J Hematol. 2016;91:947–56.PubMedCrossRefGoogle Scholar
  11. 11.
    Kyle RA, Gertz MA. Primary systemic amyloidosis: clinical and laboratory features in 474 cases. Semin Hematol. 1995;32:45–59.PubMedGoogle Scholar
  12. 12.
    Pinney JH, Smith CJ, Taube JB, Lachmann HJ, Venner CP, Gibbs SD, et al. Systemic amyloidosis in England: an epidemiological study. Br J Haematol. 2013;161:525–32.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Duston MA, Skinner M, Anderson J, Cohen AS. Peripheral neuropathy as an early marker of AL amyloidosis. Arch Intern Med. 1989;149:358–60.PubMedCrossRefGoogle Scholar
  14. 14.
    Kelly JJ Jr, Kyle RA, O’Brien PC, Dyck PJ. The natural history of peripheral neuropathy in primary systemic amyloidosis. Ann Neurol. 1979;6:1–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Matsuda M, Gono T, Morita H, Katoh N, Kodaira M, Ikeda S. Peripheral nerve involvement in primary systemic AL amyloidosis: a clinical and electrophysiological study. Eur J Neurol. 2011;18:604–10.PubMedCrossRefGoogle Scholar
  16. 16.
    Vital C, Vital A, Bouillot-Eimer S, Brechenmacher C, Ferrer X, Lagueny A. Amyloid neuropathy: a retrospective study of 35 peripheral nerve biopsies. J Peripher Nerv Syst. 2004;9:232–41.PubMedCrossRefGoogle Scholar
  17. 17.
    Verghese JP, Bradley WG, Nemni R, McAdam KP. Amyloid neuropathy in multiple myeloma and other plasma cell dyscrasias. A hypothesis of the pathogenesis of amyloid neuropathies. J Neurol Sci. 1983;59:237–46.PubMedCrossRefGoogle Scholar
  18. 18.
    Sommer C, Schroder JM. Amyloid neuropathy: immunocytochemical localization of intra- and extracellular immunoglobulin light chains. Acta Neuropathol. 1989;79:190–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Gertz MA. Immunoglobulin light chain amyloidosis diagnosis and treatment algorithm 2018. Blood Cancer J. 2018;8:44.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Jones NF, Hilton PJ, Tighe JR, Hobbs JR. Treatment of “primary” renal amyloidosis with melphalan. Lancet. 1972;2:616–9.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Kyle RA, Bayrd ED. Amyloidosis: review of 236 cases. Medicine (Baltimore). 1975;54:271–99.CrossRefGoogle Scholar
  22. 22.
    Jaccard A, Moreau P, Leblond V, Leleu X, Benboubker L, Hermine O, et al. High-dose melphalan versus melphalan plus dexamethasone for AL amyloidosis. N Engl J Med. 2007;357:1083–93.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Mhaskar R, Kumar A, Behera M, Kharfan-Dabaja MA, Djulbegovic B. Role of high-dose chemotherapy and autologous hematopoietic cell transplantation in primary systemic amyloidosis: a systematic review. Biol Blood Marrow Transplant. 2009;15:893–902.PubMedCrossRefGoogle Scholar
  24. 24.
    Mahmood S, Palladini G, Sanchorawala V, Wechalekar A. Update on treatment of light chain amyloidosis. Haematologica. 2014;99:209–21.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Barsottini OG, Arantes A, Sigulem D, Kutner JM, Ribeiro AA, Moura LA, et al. Axoval neuropathy as initial manifestation of primary amyloidosis: report of a case submitted to bone marrow transplantation. Arq Neuropsiquiatr. 2004;62:725–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Katoh N, Matsuda M, Yoshida T, Yazaki M, Morita H, Sakashita K, et al. Primary AL amyloid polyneuropathy successfully treated with high-dose melphalan followed by autologous stem cell transplantation. Muscle Nerve. 2010;41:138–43.PubMedCrossRefGoogle Scholar
  27. 27.
    Vucic S, Chong PS, Cros D. Atypical presentations of primary amyloid neuropathy. Muscle Nerve. 2003;28:696–702.PubMedCrossRefGoogle Scholar
  28. 28.
    Raz A, Goodman DS. The interaction of thyroxine with human plasma prealbumin and with the prealbumin-retinol-binding protein complex. J Biol Chem. 1969;244:3230–7.PubMedGoogle Scholar
  29. 29.
    Andrade C. A peculiar form of peripheral neuropathy; familiar atypical generalized amyloidosis with special involvement of the peripheral nerves. Brain. 1952;75:408–27.PubMedCrossRefGoogle Scholar
  30. 30.
    Araki S, Mawatari S, Ohta M, Nakajima A, Kuroiwa Y. Polyneuritic amyloidosis in a Japanese family. Arch Neurol. 1968;18:593–602.PubMedCrossRefGoogle Scholar
  31. 31.
    Andersson R. Familial amyloidosis with polyneuropathy. A clinical study based on patients living in northern Sweden. Acta Med Scand Suppl. 1976;590:1–64.PubMedGoogle Scholar
  32. 32.
    Kabat EA, Moore DH, Landow H. An Electrophoretic study of the protein components in cerebrospinal fluid and their relationship to the serum proteins. J Clin Invest. 1942;21:571–7.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Fleming CE, Mar FM, Franquinho F, Sousa MM. Chapter 17: transthyretin: an enhancer of nerve regeneration. Int Rev Neurobiol. 2009;87:337–46.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Aleshire SL, Bradley CA, Richardson LD, Parl FF. Localization of human prealbumin in choroid plexus epithelium. J Histochem Cytochem. 1983;31:608–12.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Jacobsson B, Collins VP, Grimelius L, Pettersson T, Sandstedt B, Carlstrom A. Transthyretin immunoreactivity in human and porcine liver, choroid plexus, and pancreatic islets. J Histochem Cytochem. 1989;37:31–7.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Episkopou V, Maeda S, Nishiguchi S, Shimada K, Gaitanaris GA, Gottesman ME, et al. Disruption of the transthyretin gene results in mice with depressed levels of plasma retinol and thyroid hormone. Proc Natl Acad Sci U S A. 1993;90:2375–9.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Blake CC, Geisow MJ, Oatley SJ, Rerat B, Rerat C. Structure of prealbumin: secondary, tertiary and quaternary interactions determined by Fourier refinement at 1.8 A. J Mol Biol. 1978;121:339–56.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Blake CC, Burridge JM, Oatley SJ. X-ray analysis of thyroid hormone binding to prealbumin. Biochem Soc Trans. 1978;6:1114–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Sekijima Y. Transthyretin (ATTR) amyloidosis: clinical spectrum, molecular pathogenesis and disease-modifying treatments. J Neurol Neurosurg Psychiatry. 2015;86:1036–43.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Richardson SJ, Bradley AJ, Duan W, Wettenhall RE, Harms PJ, Babon JJ, et al. Evolution of marsupial and other vertebrate thyroxine-binding plasma proteins. Am J Phys. 1994;266:R1359–70.Google Scholar
  41. 41.
    Tsuzuki T, Mita S, Maeda S, Araki S, Shimada K. Structure of the human prealbumin gene. J Biol Chem. 1985;260:12224–7.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Ando Y, Nakamura M, Araki S. Transthyretin-related familial amyloidotic polyneuropathy. Arch Neurol. 2005;62:1057–62.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Uemichi T, Liepnieks JJ, Benson MD. A trinucleotide deletion in the transthyretin gene (delta V 122) in a kindred with familial amyloidotic polyneuropathy. Neurology. 1997;48:1667–70.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Skare J, Yazici H, Erken E, Dede H, Cohen A, Milunsky A, et al. Homozygosity for the met30 transthyretin gene in a Turkish kindred with familial amyloidotic polyneuropathy. Hum Genet. 1990;86:89–90.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Yoshinaga T, Nakazato M, Ikeda S, Ohnishi A. Homozygosity for the transthyretin-Met30 gene in three Japanese siblings with type I familial amyloidotic polyneuropathy. Neurology. 1992;42:2045–7.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Quintas A, Vaz DC, Cardoso I, Saraiva MJ, Brito RM. Tetramer dissociation and monomer partial unfolding precedes protofibril formation in amyloidogenic transthyretin variants. J Biol Chem. 2001;276:27207–13.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Hammarstrom P, Wiseman RL, Powers ET, Kelly JW. Prevention of transthyretin amyloid disease by changing protein misfolding energetics. Science. 2003;299:713–6.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Colon W, Kelly JW. Partial denaturation of transthyretin is sufficient for amyloid fibril formation in vitro. Biochemistry. 1992;31:8654–60.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Schneider F, Hammarstrom P, Kelly JW. Transthyretin slowly exchanges subunits under physiological conditions: a convenient chromatographic method to study subunit exchange in oligomeric proteins. Protein Sci. 2001;10:1606–13.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Chung CM, Connors LH, Benson MD, Walsh MT. Biophysical analysis of normal transthyretin: implications for fibril formation in senile systemic amyloidosis. Amyloid. 2001;8:75–83.PubMedCrossRefGoogle Scholar
  51. 51.
    Ferrao-Gonzales AD, Palmieri L, Valory M, Silva JL, Lashuel H, Kelly JW, et al. Hydration and packing are crucial to amyloidogenesis as revealed by pressure studies on transthyretin variants that either protect or worsen amyloid disease. J Mol Biol. 2003;328:963–74.PubMedCrossRefGoogle Scholar
  52. 52.
    Sekijima Y, Hammarstrom P, Matsumura M, Shimizu Y, Iwata M, Tokuda T, et al. Energetic characteristics of the new transthyretin variant A25T may explain its atypical central nervous system pathology. Lab Invest. 2003;83:409–17.PubMedCrossRefGoogle Scholar
  53. 53.
    Shnyrov VL, Villar E, Zhadan GG, Sanchez-Ruiz JM, Quintas A, Saraiva MJ, et al. Comparative calorimetric study of non-amyloidogenic and amyloidogenic variants of the homotetrameric protein transthyretin. Biophys Chem. 2000;88:61–7.PubMedCrossRefGoogle Scholar
  54. 54.
    Bucciantini M, Giannoni E, Chiti F, Baroni F, Formigli L, Zurdo J, et al. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature. 2002;416:507–11.PubMedCrossRefGoogle Scholar
  55. 55.
    Hou X, Richardson SJ, Aguilar MI, Small DH. Binding of amyloidogenic transthyretin to the plasma membrane alters membrane fluidity and induces neurotoxicity. Biochemistry. 2005;44:11618–27.PubMedCrossRefGoogle Scholar
  56. 56.
    Sousa MM, Cardoso I, Fernandes R, Guimaraes A, Saraiva MJ. Deposition of transthyretin in early stages of familial amyloidotic polyneuropathy: evidence for toxicity of nonfibrillar aggregates. Am J Pathol. 2001;159:1993–2000.PubMedCrossRefGoogle Scholar
  57. 57.
    Reixach N, Deechongkit S, Jiang X, Kelly JW, Buxbaum JN. Tissue damage in the amyloidoses: transthyretin monomers and nonnative oligomers are the major cytotoxic species in tissue culture. Proc Natl Acad Sci U S A. 2004;101:2817–22.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Nagasaka T. Familial amyloidotic polyneuropathy and transthyretin. Subcell Biochem. 2012;65:565–607.PubMedCrossRefGoogle Scholar
  59. 59.
    Hou X, Parkington HC, Coleman HA, Mechler A, Martin LL, Aguilar MI, et al. Transthyretin oligomers induce calcium influx via voltage-gated calcium channels. J Neurochem. 2007;100:446–57.PubMedCrossRefGoogle Scholar
  60. 60.
    Nakazato M, Shiomi K, Miyazato M, Matsukura S. Type I familial amyloidotic polyneuropathy in Japan. Intern Med. 1992;31:1335–8.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Yang NC, Lee MJ, Chao CC, Chuang YT, Lin WM, Chang MF, et al. Clinical presentations and skin denervation in amyloid neuropathy due to transthyretin Ala97Ser. Neurology. 2010;75:532–8.PubMedCrossRefGoogle Scholar
  62. 62.
    Sousa A, Coelho T, Barros J, Sequeiros J. Genetic epidemiology of familial amyloidotic polyneuropathy (FAP)-type I in Povoa do Varzim and Vila do Conde (north of Portugal). Am J Med Genet. 1995;60:512–21.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Holmgren G, Costa PM, Andersson C, Asplund K, Steen L, Beckman L, et al. Geographical distribution of TTR met30 carriers in northern Sweden: discrepancy between carrier frequency and prevalence rate. J Med Genet. 1994;31:351–4.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Misu K, Hattori N, Nagamatsu M, Ikeda S, Ando Y, Nakazato M, et al. Late-onset familial amyloid polyneuropathy type I (transthyretin Met30-associated familial amyloid polyneuropathy) unrelated to endemic focus in Japan. Clinicopathological and genetic features. Brain. 1999;122:1951–62.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Plante-Bordeneuve V, Kerschen P. Transthyretin familial amyloid polyneuropathy. Handb Clin Neurol. 2013;115:643–58.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Benson MD, Cohen AS. Generalized amyloid in a family of Swedish origin. A study of 426 family members in seven generations of a new kinship with neuropathy, nephropathy, and central nervous system involvement. Ann Intern Med. 1977;86:419–24.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Blanco-Jerez CR, Jimenez-Escrig A, Gobernado JM, Lopez-Calvo S, de Blas G, Redondo C, et al. Transthyretin Tyr77 familial amyloid polyneuropathy: a clinicopathological study of a large kindred. Muscle Nerve. 1998;21:1478–85.PubMedCrossRefGoogle Scholar
  68. 68.
    Obayashi K, Ando Y. Focus on autonomic dysfunction in familial amyloidotic polyneuropathy (FAP). Amyloid. 2012;19(Suppl 1):28–9.PubMedCrossRefGoogle Scholar
  69. 69.
    Koike H, Misu K, Ikeda S, Ando Y, Nakazato M, Ando E, et al. Type I (transthyretin Met30) familial amyloid polyneuropathy in Japan: early- vs late-onset form. Arch Neurol. 2002;59:1771–6.PubMedCrossRefGoogle Scholar
  70. 70.
    Chao CC, Huang CM, Chiang HH, Luo KR, Kan HW, Yang NC, et al. Sudomotor innervation in transthyretin amyloid neuropathy: pathology and functional correlates. Ann Neurol. 2015;78:272–83.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Mariani LL, Lozeron P, Theaudin M, Mincheva Z, Signate A, Ducot B, et al. Genotype-phenotype correlation and course of transthyretin familial amyloid polyneuropathies in France. Ann Neurol. 2015;78:901–16.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Plante-Bordeneuve V, Ferreira A, Lalu T, Zaros C, Lacroix C, Adams D, et al. Diagnostic pitfalls in sporadic transthyretin familial amyloid polyneuropathy (TTR-FAP). Neurology. 2007;69:693–8.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Sattianayagam PT, Hahn AF, Whelan CJ, Gibbs SD, Pinney JH, Stangou AJ, et al. Cardiac phenotype and clinical outcome of familial amyloid polyneuropathy associated with transthyretin alanine 60 variant. Eur Heart J. 2012;33:1120–7.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Benson MD, Kincaid JC. The molecular biology and clinical features of amyloid neuropathy. Muscle Nerve. 2007;36:411–23.PubMedCrossRefGoogle Scholar
  75. 75.
    Conceicao IM, Castro JF, Scotto M, de Carvalho M. Neurophysiological markers in familial amyloid polyneuropathy patients: early changes. Clin Neurophysiol. 2008;119:1082–7.PubMedCrossRefGoogle Scholar
  76. 76.
    Koike H, Tanaka F, Hashimoto R, Tomita M, Kawagashira Y, Iijima M, et al. Natural history of transthyretin Val30Met familial amyloid polyneuropathy: analysis of late-onset cases from non-endemic areas. J Neurol Neurosurg Psychiatry. 2012;83:152–8.PubMedCrossRefGoogle Scholar
  77. 77.
    Heldestad V, Nordh E. Quantified sensory abnormalities in early genetically verified transthyretin amyloid polyneuropathy. Muscle Nerve. 2007;35:189–95.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Hofer PA, Anderson R. Postmortem findings in primary familial amyloidosis with polyneuropathy. Acta Pathol Microbiol Scand A. 1975;83:309–22.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Sobue G, Nakao N, Murakami K, Yasuda T, Sahashi K, Mitsuma T, et al. Type I familial amyloid polyneuropathy. A pathological study of the peripheral nervous system. Brain. 1990;113:903–19.PubMedCrossRefGoogle Scholar
  80. 80.
    Koike H, Misu K, Sugiura M, Iijima M, Mori K, Yamamoto M, et al. Pathology of early- vs late-onset TTR Met30 familial amyloid polyneuropathy. Neurology. 2004;63:129–38.PubMedCrossRefGoogle Scholar
  81. 81.
    Ericzon BG, Wilczek HE, Larsson M, Wijayatunga P, Stangou A, Pena JR, et al. Liver transplantation for hereditary transthyretin amyloidosis: after 20 years still the best therapeutic alternative? Transplantation. 2015;99:1847–54.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Coelho T, Maia LF, Martins da Silva A, Waddington Cruz M, Plante-Bordeneuve V, Lozeron P, et al. Tafamidis for transthyretin familial amyloid polyneuropathy: a randomized, controlled trial. Neurology. 2012;79:785–92.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Coelho T, Maia LF, da Silva AM, Cruz MW, Plante-Bordeneuve V, Suhr OB, et al. Long-term effects of tafamidis for the treatment of transthyretin familial amyloid polyneuropathy. J Neurol. 2013;260:2802–14.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Merlini G, Plante-Bordeneuve V, Judge DP, Schmidt H, Obici L, Perlini S, et al. Effects of tafamidis on transthyretin stabilization and clinical outcomes in patients with non-Val30Met transthyretin amyloidosis. J Cardiovasc Transl Res. 2013;6:1011–20.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Adams D, Suhr OB, Hund E, Obici L, Tournev I, Campistol JM, et al. First European consensus for diagnosis, management, and treatment of transthyretin familial amyloid polyneuropathy. Curr Opin Neurol. 2016;29(Suppl 1):S14–26.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Sekijima Y, Dendle MA, Kelly JW. Orally administered diflunisal stabilizes transthyretin against dissociation required for amyloidogenesis. Amyloid. 2006;13:236–49.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Miller SR, Sekijima Y, Kelly JW. Native state stabilization by NSAIDs inhibits transthyretin amyloidogenesis from the most common familial disease variants. Lab Invest. 2004;84:545–52.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Berk JL, Suhr OB, Obici L, Sekijima Y, Zeldenrust SR, Yamashita T, et al. Repurposing diflunisal for familial amyloid polyneuropathy: a randomized clinical trial. JAMA. 2013;310:2658–67.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Sekijima Y, Tojo K, Morita H, Koyama J, Ikeda S. Safety and efficacy of long-term diflunisal administration in hereditary transthyretin (ATTR) amyloidosis. Amyloid. 2015;22:79–83.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Adams D, Gonzalez-Duarte A, O’Riordan WD, Yang CC, Ueda M, Kristen AV, et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N Engl J Med. 2018;379:11–21.PubMedCrossRefGoogle Scholar
  91. 91.
    Benson MD, Waddington-Cruz M, Berk JL, Polydefkis M, Dyck PJ, Wang AK, et al. Inotersen treatment for patients with hereditary transthyretin amyloidosis. N Engl J Med. 2018;379:22–31.PubMedCrossRefGoogle Scholar
  92. 92.
    Buxbaum JN. Oligonucleotide drugs for transthyretin amyloidosis. N Engl J Med. 2018;379:82–5.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Chi-Chao Chao
    • 1
    Email author
  • Hung-Wei Kan
    • 2
  • Ti-Yen Yeh
    • 2
  • Ya-Yin Cheng
    • 2
  • Sung-Tsang Hsieh
    • 1
    • 2
    • 3
    • 4
    • 5
  1. 1.Department of NeurologyNational Taiwan University HospitalTaipeiTaiwan
  2. 2.Department of Anatomy and Cell BiologyNational Taiwan University College of MedicineTaipeiTaiwan
  3. 3.Graduate Institute of Brain and Mind SciencesNational Taiwan University College of MedicineTaipeiTaiwan
  4. 4.Graduate Institute of Clinical MedicineNational Taiwan University College of MedicineTaipeiTaiwan
  5. 5.Center of Precision MedicineNational Taiwan University College of MedicineTaipeiTaiwan

Personalised recommendations