Advertisement

Autonomic Testing and Nerve Fiber Pathology

  • Ahmad R. Abuzinadah
  • Christopher H. GibbonsEmail author
Chapter

Abstract

The autonomic nervous system is a diffuse, complicated component of both the peripheral and central nervous system. Due to the extensive innervation of most organs, there are a number of different techniques that have been developed to study the autonomic nervous system. For the purposes of this review, we will focus on tests performed by neurologists, although many additional tests of autonomic function exist across various specialties. The autonomic function tests performed by neurologists typically encompass three major domains of physiological measurement: (1) measurement of parasympathetic cholinergic cardiovagal function, (2) measurement of sympathetic adrenergic vasomotor function, and (3) measurement of sympathetic cholinergic sudomotor function. These tests of autonomic physiology help to localize the lesion within the autonomic nervous system and hence will aid in the differential diagnosis. Autonomic function testing is a recommended part of polyneuropathy screening in individuals with symptoms of autonomic dysfunction. A combination of different autonomic function tests provides a higher sensitivity and specificity than a single measure. In addition to a diagnosis of sympathetic adrenergic, sympathetic cholinergic, or parasympathetic dysfunction, tilt table testing can confirm the presence of orthostatic or delayed orthostatic hypotension, postural tachycardia syndrome, and neurally mediated syncope. Recently, the expansion of the skin biopsy technique to include evaluation of somatic nociceptive C-fibers and autonomic sudomotor, pilomotor, and vasomotor fibers has improved our ability to define a structural autonomic abnormality. Although the methods to quantify the density of autonomic fibers within skin biopsies are still in evolution, substantial progress has been made in understanding the structural and functional correlates of disease.

Keywords

Heart rate variability Valsalva maneuver Tilting table Acting standing test Sympathetic skin response Quantitative sudomotor axon reflex testing (QSART) Thermoregulatory sweat test Skin biopsy Intraepidermal nerve fiber density Sweat gland nerve fiber density Pilomotor nerve 

References

  1. 1.
    Daube JR, Rubin DI, editors. Clinical neurophysiology. New York: Oxford University Press; 2009.Google Scholar
  2. 2.
    Katona PG, Jih F. Respiratory sinus arrhythmia: noninvasive measure of parasympathetic cardiac control. J Appl Physiol. 1975;39:801–5.CrossRefGoogle Scholar
  3. 3.
    Bennett T, Fentem PH, Fitton D, Hampton JR, Hosking DJ, Riggott PA. Assessment of vagal control of the heart in diabetes. Measures of R-R interval variation under different conditions. Br Heart J. 1977;39:25–8.CrossRefGoogle Scholar
  4. 4.
    Pfeifer MA, Cook D, Brodsky J, Tice D, Reenan A, Swedine S, et al. Quantitative evaluation of cardiac parasympathetic activity in normal and diabetic man. Diabetes. 1982;31:339–45.CrossRefGoogle Scholar
  5. 5.
    Low PA, Benarroch EE, editors. Clinical autonomic disorders. New York: Wolters Kluwer; 2009.Google Scholar
  6. 6.
    Bennett T, Farquhar IK, Hosking DJ, Hampton JR. Assessment of methods for estimating autonomic nervous control of the heart in patients with diabetes mellitus. Diabetes. 1978;27:1167–74.CrossRefGoogle Scholar
  7. 7.
    Novak P. Quantitative autonomic testing. J Vis Exp. 2011;53:2502.Google Scholar
  8. 8.
    Lacroix D, Logier R, Kacet S, Hazard JR, Dagano J, Lekieffre J. Effects of consecutive administration of central and peripheral anticholinergic agents on respiratory sinus arrhythmia in normal subjects. J Auton Nerv Syst. 1992;39:211–7.CrossRefGoogle Scholar
  9. 9.
    Wang J, Wang X, Irnaten M, Venkatesan P, Evans C, Baxi S, et al. Endogenous acetylcholine and nicotine activation enhances GABAergic and glycinergic inputs to cardiac vagal neurons. J Neurophysiol. 2003;89:2473–81.CrossRefGoogle Scholar
  10. 10.
    Low PA, Opfer-Gehrking TL. Differential effects of amitriptyline on sudomotor, cardiovagal, and adrenergic function in human subjects. Muscle Nerve. 1992;15:1340–4.CrossRefGoogle Scholar
  11. 11.
    Davidson J, Watkins L, Owens M, Krulewicz S, Connor K, Carpenter D, et al. Effects of paroxetine and venlafaxine XR on heart rate variability in depression. J Clin Psychopharmacol. 2005;25:480–4.CrossRefGoogle Scholar
  12. 12.
    Pstras L, Thomaseth K, Waniewski J, Balzani I, Bellavere F. The Valsalva manoeuvre: physiology and clinical examples. Acta Physiol (Oxf). 2016;217:103–19.CrossRefGoogle Scholar
  13. 13.
    Korner PI, Tonkin AM, Uther JB. Reflex and mechanical circulatory effects of graded Valsalva maneuvers in normal man. J Appl Physiol. 1976;40:434–40.CrossRefGoogle Scholar
  14. 14.
    Freeman R. Assessment of cardiovascular autonomic function. Clin Neurophysiol. 2006;117:716–30.CrossRefGoogle Scholar
  15. 15.
    Jones PK, Gibbons CH. The role of autonomic testing in syncope. Auton Neurosci. 2014;184:40–5.CrossRefGoogle Scholar
  16. 16.
    Benarroch E, editor. Autonomic neurology. New York: Oxford University Press; 2014.Google Scholar
  17. 17.
    Vogel ER, Sandroni P, Low PA. Blood pressure recovery from Valsalva maneuver in patients with autonomic failure. Neurology. 2005;65:1533–7.CrossRefGoogle Scholar
  18. 18.
    Sandroni P, Benarroch EE, Low PA. Pharmacological dissection of components of the Valsalva maneuver in adrenergic failure. J Appl Physiol (1985). 1991;71:1563–7.CrossRefGoogle Scholar
  19. 19.
    Palamarchuk IS, Baker J, Kimpinski K. The utility of Valsalva maneuver in the diagnoses of orthostatic disorders. Am J Physiol Regul Integr Comp Physiol. 2016;310:R243–52.CrossRefGoogle Scholar
  20. 20.
    Saal DP, Thijs RD, van Dijk JG. Tilt table testing in neurology and clinical neurophysiology. Clin Neurophysiol. 2016;127:1022–30.CrossRefGoogle Scholar
  21. 21.
    Wieling W, Krediet CT, van Dijk N, Linzer M, Tschakovsky ME. Initial orthostatic hypotension: review of a forgotten condition. Clin Sci (Lond). 2007;112:157–65.CrossRefGoogle Scholar
  22. 22.
    Fitzpatrick AP, Theodorakis G, Vardas P, Sutton R. Methodology of head-up tilt testing in patients with unexplained syncope. J Am Coll Cardiol. 1991;17:125–30.CrossRefGoogle Scholar
  23. 23.
    Freeman R, Wieling W, Axelrod FB, Benditt DG, Benarroch E, Biaggioni I, et al. Consensus statement on the definition of orthostatic hypotension, neurally mediated syncope and the postural tachycardia syndrome. Auton Neurosci. 2011;161:46–8.CrossRefGoogle Scholar
  24. 24.
    Gibbons CH, Freeman R. Delayed orthostatic hypotension: a frequent cause of orthostatic intolerance. Neurology. 2006;67:28–32.CrossRefGoogle Scholar
  25. 25.
    Gibbons CH, Freeman R. Clinical implications of delayed orthostatic hypotension: a 10-year follow-up study. Neurology. 2015;85:1362–7.CrossRefGoogle Scholar
  26. 26.
    Smith JJ, Porth CM, Erickson M. Hemodynamic response to the upright posture. J Clin Pharmacol. 1994;34:375–86.CrossRefGoogle Scholar
  27. 27.
    Kucera P, Goldenberg Z, Kurca E. Sympathetic skin response: review of the method and its clinical use. Bratisl Lek Listy. 2004;105:108–16.PubMedGoogle Scholar
  28. 28.
    Shahani BT, Halperin JJ, Boulu P, Cohen J. Sympathetic skin response – a method of assessing unmyelinated axon dysfunction in peripheral neuropathies. J Neurol Neurosurg Psychiatry. 1984;47:536–42.CrossRefGoogle Scholar
  29. 29.
    Seto-Poon M, Madronio M, Kirkness JP, Amis TC, Byth K, Lim CL. Decrement of the skin conductance response to repeated volitional inspiration. Clin Neurophysiol. 2005;116:1172–80.CrossRefGoogle Scholar
  30. 30.
    Drory VE, Korczyn AD. Sympathetic skin response: age effect. Neurology. 1993;43:1818–20.CrossRefGoogle Scholar
  31. 31.
    Lanctin C, Magot A, Chambellan A, Tich SN, Pereon Y. Respiratory evoked potentials and occlusion elicited sympathetic skin response. Neurophysiol Clin. 2005;35:119–25.CrossRefGoogle Scholar
  32. 32.
    Huang YN, Jia ZR, Shi X, Sun XR. Value of sympathetic skin response test in the early diagnosis of diabetic neuropathy. Chin Med J (Engl). 2004;117:1317–20.Google Scholar
  33. 33.
    Low VA, Sandroni P, Fealey RD, Low PA. Detection of small-fiber neuropathy by sudomotor testing. Muscle Nerve. 2006;34:57–61.CrossRefGoogle Scholar
  34. 34.
    Tobin K, Giuliani MJ, Lacomis D. Comparison of different modalities for detection of small fiber neuropathy. Clin Neurophysiol. 1999;110:1909–12.CrossRefGoogle Scholar
  35. 35.
    Stewart JD, Low PA, Fealey RD. Distal small fiber neuropathy: results of tests of sweating and autonomic cardiovascular reflexes. Muscle Nerve. 1992;15:661–5.CrossRefGoogle Scholar
  36. 36.
    Kamel JT, Vogrin SJ, Knight-Sadler RJ, Willems NK, Seiderer L, Cook MJ, et al. Combining cutaneous silent periods with quantitative sudomotor axon reflex testing in the assessment of diabetic small fiber neuropathy. Clin Neurophysiol. 2015;126:1047–53.CrossRefGoogle Scholar
  37. 37.
    Berger MJ, Kimpinski K. Test-retest reliability of quantitative sudomotor axon reflex testing. J Clin Neurophysiol. 2013;30:308–12.CrossRefGoogle Scholar
  38. 38.
    Fealey RD, Low PA, Thomas JE. Thermoregulatory sweating abnormalities in diabetes mellitus. Mayo Clin Proc. 1989;64:617–28.CrossRefGoogle Scholar
  39. 39.
    Coon EA, Fealey RD, Sletten DM, Mandrekar JN, Benarroch EE, Sandroni P, et al. Anhidrosis in multiple system atrophy involves pre- and postganglionic sudomotor dysfunction. Mov Disord. 2017;32:397–404.CrossRefGoogle Scholar
  40. 40.
    Cohen J, Low P, Fealey R, Sheps S, Jiang NS. Somatic and autonomic function in progressive autonomic failure and multiple system atrophy. Ann Neurol. 1987;22:692–9.CrossRefGoogle Scholar
  41. 41.
    Lauria G, Bakkers M, Schmitz C, Lombardi R, Penza P, Devigili G, et al. Intraepidermal nerve fiber density at the distal leg: a worldwide normative reference study. J Peripher Nerv Syst. 2010;15:202–7.CrossRefGoogle Scholar
  42. 42.
    Nolano M, Biasiotta A, Lombardi R, Provitera V, Stancanelli A, Caporaso G, et al. Epidermal innervation morphometry by immunofluorescence and bright-field microscopy. J Peripher Nerv Syst. 2015;20:387–91.CrossRefGoogle Scholar
  43. 43.
    Lauria G, Hsieh ST, Johansson O, Kennedy WR, Leger JM, Mellgren SI, et al. European Federation of Neurological Societies/Peripheral Nerve Society Guideline on the use of skin biopsy in the diagnosis of small fiber neuropathy. Report of a joint task force of the European Federation of Neurological Societies and the Peripheral Nerve Society. Eur J Neurol. 2010;17:903–12, e44–9.CrossRefGoogle Scholar
  44. 44.
    McArthur JC, Stocks EA, Hauer P, Cornblath DR, Griffin JW. Epidermal nerve fiber density: normative reference range and diagnostic efficiency. Arch Neurol. 1998;55:1513–20.CrossRefGoogle Scholar
  45. 45.
    Gibbons CH, Illigens BM, Wang N, Freeman R. Quantification of sweat gland innervation: a clinical-pathologic correlation. Neurology. 2009;72:1479–86.CrossRefGoogle Scholar
  46. 46.
    Luo KR, Chao CC, Hsieh PC, Lue JH, Hsieh ST. Effect of glycemic control on sudomotor denervation in type 2 diabetes. Diabetes Care. 2012;35:612–6.CrossRefGoogle Scholar
  47. 47.
    Luo KR, Chao CC, Chen YT, Huang CM, Yang NC, Kan HW, et al. Quantitation of sudomotor innervation in skin biopsies of patients with diabetic neuropathy. J Neuropathol Exp Neurol. 2011;70:930–8.CrossRefGoogle Scholar
  48. 48.
    Gibbons CH, Illigens BM, Wang N, Freeman R. Quantification of sudomotor innervation: a comparison of three methods. Muscle Nerve. 2010;42:112–9.CrossRefGoogle Scholar
  49. 49.
    Nolano M, Provitera V, Estraneo A, Selim MM, Caporaso G, Stancanelli A, et al. Sensory deficit in Parkinson’s disease: evidence of a cutaneous denervation. Brain. 2008;131:1903–11.CrossRefGoogle Scholar
  50. 50.
    Nolano M, Provitera V, Caporaso G, Stancanelli A, Vitale DF, Santoro L. Quantification of pilomotor nerves: a new tool to evaluate autonomic involvement in diabetes. Neurology. 2010;75:1089–97.CrossRefGoogle Scholar
  51. 51.
    Gibbons CH, Wang N, Freeman R. Capsaicin induces degeneration of cutaneous autonomic nerve fibers. Ann Neurol. 2010;68:888–98.CrossRefGoogle Scholar
  52. 52.
    Siepmann T, Illigens B, Gibbons C, Freeman R. The quantitative pilomotor axon-reflex test (QPART)-A technique to assess autonomic nerve fiber function (P05.197). Neurology. 2012;78(Meeting Abstracts 1):P05.197.CrossRefGoogle Scholar
  53. 53.
    Donadio V, Incensi A, Giannoccaro MP, Cortelli P, Di Stasi V, Pizza F, et al. Peripheral autonomic neuropathy: diagnostic contribution of skin biopsy. J Neuropathol Exp Neurol. 2012;71:1000–8.CrossRefGoogle Scholar
  54. 54.
    Nolano M, Provitera V, Perretti A, Stancanelli A, Saltalamacchia AM, Donadio V, et al. Ross syndrome: a rare or a misknown disorder of thermoregulation? A skin innervation study on 12 subjects. Brain. 2006;129:2119–31.CrossRefGoogle Scholar
  55. 55.
    McArthur JC, Griffin JW. Another tool for the neurologist’s toolbox. Ann Neurol. 2005;57:163–7.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Neurology Division, Internal Medicine DepartmentKing Abdulaziz UniversityJeddahSaudi Arabia
  2. 2.Neurology Department, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonUSA

Personalised recommendations