Advertisement

Neuropathic Pain in Small Fiber Neuropathy

  • Ming-Chang Chiang
  • Paul-Chen Hsieh
  • Sung-Tsang Hsieh
Chapter

Abstract

Neuropathic pain is the most common and disabling symptom in small fiber neuropathy (SFN). It usually presents as a burning or tingling sensation in the distal limbs, accompanied by increased pain sensitivity, such as hyperalgesia or allodynia. Neuropathic pain in SFN may be a direct consequence of enhanced sensitivity in small myelinated Aδ and unmyelinated C fibers due to axonal degeneration or local inflammation. Damage to these nerve fibers facilitates the release of nerve growth factor or proinflammatory cytokines, which in turn activate nociceptive receptors expressed in sensory neurons, including voltage-gated sodium channels, transient receptor potential cation channel vanilloid type 1 (TRPV1) receptor, and glutamate receptors. Neuropathic pain may also be attributed to maladaptive plasticity in the central nervous system, where hypersensitivity in the spinal or cerebral nociceptive systems, also known as central sensitization, is induced by long-term peripheral overstimulations. In addition, sensory deafferentation due to peripheral denervation also contributes to the development of chronic central pain, where cortical reorganization or remodeling in the pain-processing areas sustains augmented nociceptive responses. Treatment of neuropathic pain in SFN is challenging. Pharmacological therapy is the major strategy to alleviate neuropathic pain in SFN. Possible choices of medications include antiepileptic drugs, antidepressants, and opioids. However, up to 40% of patients with neuropathic pain are refractory to pharmacological treatments. Nonpharmacological therapeutic strategies, e.g., stimulation of peripheral sensory nerves, the spinal cord, or the brain, may be considered as an alternative for patients who are nonresponsive or intolerable to medications. In recent years, noninvasive brain stimulation techniques including transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) have shown promising advances in pain treatment. These techniques may reset nociceptive processes in the brain by modulating synaptic plasticity in the pain-processing areas. Nevertheless, large randomized clinical trials are still warranted to evaluate the efficacy of these alternative treatment methods.

Keywords

Central sensitization Maladaptive plasticity Sensory deafferentation Axonal degeneration Neuroimaging Functional magnetic resonance imaging (fMRI) Transcranial magnetic stimulation (TMS) Transcranial direct current stimulation (tDCS) Anterior cingulate cortex Amygdala Limbic system 

References

  1. 1.
    Hsieh ST. Pathology and functional diagnosis of small-fiber painful neuropathy. Acta Neurol Taiwanica. 2010;19:82–9.Google Scholar
  2. 2.
    Devigili G, Tugnoli V, Penza P, Camozzi F, Lombardi R, Melli G, et al. The diagnostic criteria for small fibre neuropathy: from symptoms to neuropathology. Brain. 2008;131:1912–25.CrossRefGoogle Scholar
  3. 3.
    Baron R, Forster M, Binder A. Subgrouping of patients with neuropathic pain according to pain-related sensory abnormalities: a first step to a stratified treatment approach. Lancet Neurol. 2012;11:999–1005.CrossRefGoogle Scholar
  4. 4.
    Truini A, Garcia-Larrea L, Cruccu G. Reappraising neuropathic pain in humans—how symptoms help disclose mechanisms. Nat Rev Neurol. 2013;9:572–82.CrossRefGoogle Scholar
  5. 5.
    Lin YH, Hsieh SC, Chao CC, Chang YC, Hsieh ST. Influence of aging on thermal and vibratory thresholds of quantitative sensory testing. J Peripher Nerv Syst. 2005;10:269–81.CrossRefGoogle Scholar
  6. 6.
    Hsieh PC, Tseng MT, Chao CC, Lin YH, Tseng WY, Liu KH, et al. Imaging signatures of altered brain responses in small-fiber neuropathy: reduced functional connectivity of the limbic system after peripheral nerve degeneration. Pain. 2015;156:904–16.CrossRefGoogle Scholar
  7. 7.
    Chao CC, Hsieh SC, Tseng MT, Chang YC, Hsieh ST. Patterns of contact heat evoked potentials (CHEP) in neuropathy with skin denervation: correlation of CHEP amplitude with intraepidermal nerve fiber density. Clin Neurophysiol. 2008;119:653–61.CrossRefGoogle Scholar
  8. 8.
    Chien HF, Tseng TJ, Lin WM, Yang CC, Chang YC, Chen RC, et al. Quantitative pathology of cutaneous nerve terminal degeneration in the human skin. Acta Neuropathol. 2001;102:455–61.PubMedGoogle Scholar
  9. 9.
    Chiang MC, Lin YH, Pan CL, Tseng TJ, Lin WM, Hsieh ST. Cutaneous innervation in chronic inflammatory demyelinating polyneuropathy. Neurology. 2002;59:1094–8.CrossRefGoogle Scholar
  10. 10.
    Chao CC, Tseng MT, Lin YJ, Yang WS, Hsieh SC, Lin YH, et al. Pathophysiology of neuropathic pain in type 2 diabetes: skin denervation and contact heat-evoked potentials. Diabetes Care. 2010;33:2654–9.CrossRefGoogle Scholar
  11. 11.
    Tseng MT, Chiang MC, Chao CC, Tseng WY, Hsieh ST. fMRI evidence of degeneration-induced neuropathic pain in diabetes: enhanced limbic and striatal activations. Hum Brain Mapp. 2013;34:2733–46.CrossRefGoogle Scholar
  12. 12.
    Holland NR, Stocks A, Hauer P, Cornblath DR, Griffin JW, McArthur JC. Intraepidermal nerve fiber density in patients with painful sensory neuropathy. Neurology. 1997;48:708–11.CrossRefGoogle Scholar
  13. 13.
    Kennedy WR, Said G. Sensory nerves in skin: answers about painful feet? Neurology. 1999;53:1614–5.CrossRefGoogle Scholar
  14. 14.
    Periquet MI, Novak V, Collins MP, Nagaraja HN, Erdem S, Nash SM, et al. Painful sensory neuropathy: prospective evaluation using skin biopsy. Neurology. 1999;53:1641–7.CrossRefGoogle Scholar
  15. 15.
    Lindenlaub T, Sommer C. Epidermal innervation density after partial sciatic nerve lesion and pain-related behavior in the rat. Acta Neuropathol. 2002;104:137–43.CrossRefGoogle Scholar
  16. 16.
    Nolano M, Crisci C, Santoro L, Barbieri F, Casale R, Kennedy WR, et al. Absent innervation of skin and sweat glands in congenital insensitivity to pain with anhidrosis. Clin Neurophysiol. 2000;111:1596–601.CrossRefGoogle Scholar
  17. 17.
    Lauria G, Lombardi R. Skin biopsy in painful and immune-mediated neuropathies. J Peripher Nerv Syst. 2012;17(Suppl 3):38–45.CrossRefGoogle Scholar
  18. 18.
    Lai J, Hunter JC, Porreca F. The role of voltage-gated sodium channels in neuropathic pain. Curr Opin Neurobiol. 2003;13:291–7.CrossRefGoogle Scholar
  19. 19.
    Hong S, Wiley JW. Early painful diabetic neuropathy is associated with differential changes in the expression and function of vanilloid receptor 1. J Biol Chem. 2005;280:618–27.CrossRefGoogle Scholar
  20. 20.
    Hudson LJ, Bevan S, Wotherspoon G, Gentry C, Fox A, Winter J. VR1 protein expression increases in undamaged DRG neurons after partial nerve injury. Eur J Neurosci. 2001;13:2105–14.CrossRefGoogle Scholar
  21. 21.
    Davis JB, Gray J, Gunthorpe MJ, Hatcher JP, Davey PT, Overend P, et al. Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature. 2000;405:183–7.CrossRefGoogle Scholar
  22. 22.
    Ko MH, Hsieh YL, Hsieh ST, Tseng TJ. Nerve demyelination increases metabotropic glutamate receptor subtype 5 expression in peripheral painful mononeuropathy. Int J Mol Sci. 2015;16:4642–65.CrossRefGoogle Scholar
  23. 23.
    Marchand F, Perretti M, McMahon SB. Role of the immune system in chronic pain. Nat Rev Neurosci. 2005;6:521–32.CrossRefGoogle Scholar
  24. 24.
    Purwata TE. High TNF-alpha plasma levels and macrophages iNOS and TNF-alpha expression as risk factors for painful diabetic neuropathy. J Pain Res. 2011;4:169–75.CrossRefGoogle Scholar
  25. 25.
    Uçeyler N, Kafke W, Riediger N, He L, Necula G, Toyka KV, et al. Elevated proinflammatory cytokine expression in affected skin in small fiber neuropathy. Neurology. 2010;74:1806–13.CrossRefGoogle Scholar
  26. 26.
    Woolf CJ. Central sensitization: implications for the diagnosis and treatment of pain. Pain. 2011;152:S2–15.CrossRefGoogle Scholar
  27. 27.
    Latremoliere A, Woolf CJ. Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J Pain. 2009;10:895–926.CrossRefGoogle Scholar
  28. 28.
    Baron R. Mechanisms of disease: neuropathic pain—a clinical perspective. Nat Clin Pract Neurol. 2006;2:95–106.CrossRefGoogle Scholar
  29. 29.
    von Hehn CA, Baron R, Woolf CJ. Deconstructing the neuropathic pain phenotype to reveal neural mechanisms. Neuron. 2012;73:638–52.CrossRefGoogle Scholar
  30. 30.
    Mendell LM, Wall PD. Responses of single dorsal cord cells to peripheral cutaneous unmyelinated fibres. Nature. 1965;206:97–9.CrossRefGoogle Scholar
  31. 31.
    Cook AJ, Woolf CJ, Wall PD, McMahon SB. Dynamic receptive field plasticity in rat spinal cord dorsal horn following C-primary afferent input. Nature. 1987;325:151–3.CrossRefGoogle Scholar
  32. 32.
    Torebjork HE, Lundberg LE, LaMotte RH. Central changes in processing of mechanoreceptive input in capsaicin-induced secondary hyperalgesia in humans. J Physiol. 1992;448:765–80.CrossRefGoogle Scholar
  33. 33.
    Devor M. Ectopic discharge in Abeta afferents as a source of neuropathic pain. Exp Brain Res. 2009;196:115–28.CrossRefGoogle Scholar
  34. 34.
    Koltzenburg M, Lundberg LE, Torebjork HE. Dynamic and static components of mechanical hyperalgesia in human hairy skin. Pain. 1992;51:207–19.CrossRefGoogle Scholar
  35. 35.
    Woolf CJ, Thompson SW. The induction and maintenance of central sensitization is dependent on N-methyl-D-aspartic acid receptor activation; implications for the treatment of post-injury pain hypersensitivity states. Pain. 1991;44:293–9.CrossRefGoogle Scholar
  36. 36.
    Luo C, Kuner T, Kuner R. Synaptic plasticity in pathological pain. Trends Neurosci. 2014;37:343–55.CrossRefGoogle Scholar
  37. 37.
    Porreca F, Ossipov MH, Gebhart GF. Chronic pain and medullary descending facilitation. Trends Neurosci. 2002;25:319–25.CrossRefGoogle Scholar
  38. 38.
    Urban MO, Gebhart GF. Supraspinal contributions to hyperalgesia. Proc Natl Acad Sci U S A. 1999;96:7687–92.CrossRefGoogle Scholar
  39. 39.
    Wei F, Zhuo M. Potentiation of sensory responses in the anterior cingulate cortex following digit amputation in the anaesthetised rat. J Physiol. 2001;532:823–33.CrossRefGoogle Scholar
  40. 40.
    Fu Y, Han J, Ishola T, Scerbo M, Adwanikar H, Ramsey C, et al. PKA and ERK, but not PKC, in the amygdala contribute to pain-related synaptic plasticity and behavior. Mol Pain. 2008;4:26.CrossRefGoogle Scholar
  41. 41.
    Pedersen LH, Scheel-Kruger J, Blackburn-Munro G. Amygdala GABA-A receptor involvement in mediating sensory-discriminative and affective-motivational pain responses in a rat model of peripheral nerve injury. Pain. 2007;127:17–26.CrossRefGoogle Scholar
  42. 42.
    Vogt BA. Pain and emotion interactions in subregions of the cingulate gyrus. Nat Rev Neurosci. 2005;6:533–44.CrossRefGoogle Scholar
  43. 43.
    Derbyshire SW. Exploring the pain “neuromatrix”. Curr Rev Pain. 2000;4:467–77.CrossRefGoogle Scholar
  44. 44.
    Peyron R, Laurent B, Garcia-Larrea L. Functional imaging of brain responses to pain. A review and meta-analysis (2000). Neurophysiol Clin. 2000;30:263–88.CrossRefGoogle Scholar
  45. 45.
    Schweinhardt P, Glynn C, Brooks J, McQuay H, Jack T, Chessell I, et al. An fMRI study of cerebral processing of brush-evoked allodynia in neuropathic pain patients. Neuroimage. 2006;32:256–65.CrossRefGoogle Scholar
  46. 46.
    Becerra L, Morris S, Bazes S, Gostic R, Sherman S, Gostic J, et al. Trigeminal neuropathic pain alters responses in CNS circuits to mechanical (brush) and thermal (cold and heat) stimuli. J Neurosci. 2006;26:10646–57.CrossRefGoogle Scholar
  47. 47.
    DaSilva AF, Becerra L, Pendse G, Chizh B, Tully S, Borsook D. Colocalized structural and functional changes in the cortex of patients with trigeminal neuropathic pain. PLoS One. 2008;3:e3396.CrossRefGoogle Scholar
  48. 48.
    Lauria G, Morbin M, Lombardi R, Capobianco R, Camozzi F, Pareyson D, et al. Expression of capsaicin receptor immunoreactivity in human peripheral nervous system and in painful neuropathies. J Peripher Nerv Syst. 2006;11:262–71.CrossRefGoogle Scholar
  49. 49.
    MacIver K, Lloyd DM, Kelly S, Roberts N, Nurmikko T. Phantom limb pain, cortical reorganization and the therapeutic effect of mental imagery. Brain. 2008;131:2181–91.CrossRefGoogle Scholar
  50. 50.
    Flor H. Maladaptive plasticity, memory for pain and phantom limb pain: review and suggestions for new therapies. Expert Rev Neurother. 2008;8:809–18.CrossRefGoogle Scholar
  51. 51.
    Chiang MC, Dutton RA, Hayashi KM, Lopez OL, Aizenstein HJ, Toga AW, et al. 3D pattern of brain atrophy in HIV/AIDS visualized using tensor-based morphometry. Neuroimage. 2007;34:44–60.CrossRefGoogle Scholar
  52. 52.
    Friston KJ, Buechel C, Fink GR, Morris J, Rolls E, Dolan RJ. Psychophysiological and modulatory interactions in neuroimaging. Neuroimage. 1997;6:218–29.CrossRefGoogle Scholar
  53. 53.
    Bril V, England J, Franklin GM, Backonja M, Cohen J, Del Toro D, et al. Evidence-based guideline: treatment of painful diabetic neuropathy: report of the American Academy of Neurology, the American Association of Neuromuscular and Electrodiagnostic Medicine, and the American Academy of Physical Medicine and Rehabilitation. Neurology. 2011;76:1758–65.CrossRefGoogle Scholar
  54. 54.
    Finnerup NB, Otto M, McQuay HJ, Jensen TS, Sindrup SH. Algorithm for neuropathic pain treatment: an evidence based proposal. Pain. 2005;118:289–305.CrossRefGoogle Scholar
  55. 55.
    Moore A, Wiffen P, Kalso E. Antiepileptic drugs for neuropathic pain and fibromyalgia. JAMA. 2014;312:182–3.CrossRefGoogle Scholar
  56. 56.
    Hansson PT, Attal N, Baron R, Cruccu G. Toward a definition of pharmacoresistant neuropathic pain. Eur J Pain. 2009;13:439–40.CrossRefGoogle Scholar
  57. 57.
    Morozumi S, Kawagashira Y, Iijima M, Koike H, Hattori N, Katsuno M, et al. Intravenous immunoglobulin treatment for painful sensory neuropathy associated with Sjogren’s syndrome. J Neurol Sci. 2009;279:57–61.CrossRefGoogle Scholar
  58. 58.
    Kawagashira Y, Watanabe H, Oki Y, Iijima M, Koike H, Hattori N, et al. Intravenous immunoglobulin therapy markedly ameliorates muscle weakness and severe pain in proximal diabetic neuropathy. J Neurol Neurosurg Psychiatry. 2007;78:899–901.CrossRefGoogle Scholar
  59. 59.
    White PF, Li S, Chiu JW. Electroanalgesia: its role in acute and chronic pain management. Anesth Analg. 2001;92:505–13.CrossRefGoogle Scholar
  60. 60.
    Hamza MA, White PF, Craig WF, Ghoname ES, Ahmed HE, Proctor TJ, et al. Percutaneous electrical nerve stimulation: a novel analgesic therapy for diabetic neuropathic pain. Diabetes Care. 2000;23:365–70.CrossRefGoogle Scholar
  61. 61.
    Oyibo SO, Breislin K, Boulton AJ. Electrical stimulation therapy through stocking electrodes for painful diabetic neuropathy: a double blind, controlled crossover study. Diabet Med. 2004;21:940–4.CrossRefGoogle Scholar
  62. 62.
    Jacobs MJ, Jorning PJ, Joshi SR, Kitslaar PJ, Slaaf DW, Reneman RS. Epidural spinal cord electrical stimulation improves microvascular blood flow in severe limb ischemia. Ann Surg. 1988;207:179–83.CrossRefGoogle Scholar
  63. 63.
    Tesfaye S, Watt J, Benbow SJ, Pang KA, Miles J, MacFarlane IA. Electrical spinal-cord stimulation for painful diabetic peripheral neuropathy. Lancet. 1996;348:1698–701.CrossRefGoogle Scholar
  64. 64.
    Miyazaki Y, Koike H, Akane A, Shibata Y, Nishiwaki K, Sobue G. Spinal cord stimulation markedly ameliorated refractory neuropathic pain in transthyretin Val30Met familial amyloid polyneuropathy. Amyloid. 2011;18:87–90.CrossRefGoogle Scholar
  65. 65.
    Fregni F, Freedman S, Pascual-Leone A. Recent advances in the treatment of chronic pain with non-invasive brain stimulation techniques. Lancet Neurol. 2007;6:188–91.CrossRefGoogle Scholar
  66. 66.
    Hallett M. Transcranial magnetic stimulation and the human brain. Nature. 2000;406:147–50.CrossRefGoogle Scholar
  67. 67.
    Ziemann U. TMS induced plasticity in human cortex. Rev Neurosci. 2004;15:253–66.CrossRefGoogle Scholar
  68. 68.
    Tamura Y, Okabe S, Ohnishi T, NS D, Arai N, Mochio S, et al. Effects of 1-Hz repetitive transcranial magnetic stimulation on acute pain induced by capsaicin. Pain. 2004;107:107–15.CrossRefGoogle Scholar
  69. 69.
    Graff-Guerrero A, Gonzalez-Olvera J, Fresan A, Gomez-Martin D, Mendez-Nunez JC, Pellicer F. Repetitive transcranial magnetic stimulation of dorsolateral prefrontal cortex increases tolerance to human experimental pain. Brain Res Cogn Brain Res. 2005;25:153–60.CrossRefGoogle Scholar
  70. 70.
    Nguyen JP, Nizard J, Keravel Y, Lefaucheur JP. Invasive brain stimulation for the treatment of neuropathic pain. Nat Rev Neurol. 2011;7:699–709.CrossRefGoogle Scholar
  71. 71.
    Galhardoni R, Correia GS, Araujo H, Yeng LT, Fernandes DT, Kaziyama HH, et al. Repetitive transcranial magnetic stimulation in chronic pain: a review of the literature. Arch Phys Med Rehabil. 2015;96:S156–72.CrossRefGoogle Scholar
  72. 72.
    Onesti E, Gabriele M, Cambieri C, Ceccanti M, Raccah R, Di Stefano G, et al. H-coil repetitive transcranial magnetic stimulation for pain relief in patients with diabetic neuropathy. Eur J Pain. 2013;17:1347–56.CrossRefGoogle Scholar
  73. 73.
    Qiu YQ, Hua XY, Zuo CT, Li T, Zheng MX, Shen YD, et al. Deactivation of distant pain-related regions induced by 20-day rTMS: a case study of one-week pain relief for long-term intractable deafferentation pain. Pain Physician. 2014;17:E99–105.PubMedGoogle Scholar
  74. 74.
    Maarrawi J, Peyron R, Mertens P, Costes N, Magnin M, Sindou M, et al. Motor cortex stimulation for pain control induces changes in the endogenous opioid system. Neurology. 2007;69:827–34.CrossRefGoogle Scholar
  75. 75.
    de Andrade DC, Mhalla A, Adam F, Texeira MJ, Bouhassira D. Neuropharmacological basis of rTMS-induced analgesia: the role of endogenous opioids. Pain. 2011;152:320–6.CrossRefGoogle Scholar
  76. 76.
    Lefaucheur JP, Drouot X, Menard-Lefaucheur I, Keravel Y, Nguyen JP. Motor cortex rTMS restores defective intracortical inhibition in chronic neuropathic pain. Neurology. 2006;67:1568–74.CrossRefGoogle Scholar
  77. 77.
    Filmer HL, Dux PE, Mattingley JB. Applications of transcranial direct current stimulation for understanding brain function. Trends Neurosci. 2014;37:742–53.CrossRefGoogle Scholar
  78. 78.
    Kim YJ, Ku J, Kim HJ, Im DJ, Lee HS, Han KA, et al. Randomized, sham controlled trial of transcranial direct current stimulation for painful diabetic polyneuropathy. Ann Rehabil Med. 2013;37:766–76.CrossRefGoogle Scholar
  79. 79.
    Portilla AS, Bravo GL, Miraval FK, Villamar MF, Schneider JC, Ryan CM, et al. A feasibility study assessing cortical plasticity in chronic neuropathic pain following burn injury. J Burn Care Res. 2013;34:e48–52.CrossRefGoogle Scholar
  80. 80.
    DosSantos MF, Love TM, Martikainen IK, Nascimento TD, Fregni F, Cummiford C, et al. Immediate effects of tDCS on the mu-opioid system of a chronic pain patient. Front Psychiatry. 2012;3:93.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Ming-Chang Chiang
    • 1
  • Paul-Chen Hsieh
    • 2
  • Sung-Tsang Hsieh
    • 3
    • 4
    • 5
    • 6
    • 7
  1. 1.Department of Biomedical EngineeringNational Yang-Ming UniversityTaipeiTaiwan
  2. 2.Department of DermatologyNational Taiwan University HospitalTaipeiTaiwan
  3. 3.Department of Anatomy and Cell BiologyNational Taiwan University College of MedicineTaipeiTaiwan
  4. 4.Center of Precision MedicineNational Taiwan University College of MedicineTaipeiTaiwan
  5. 5.Graduate Institute of Brain and Mind SciencesNational Taiwan University College of MedicineTaipeiTaiwan
  6. 6.Graduate Institute of Clinical MedicineNational Taiwan University College of MedicineTaipeiTaiwan
  7. 7.Department of NeurologyNational Taiwan University HospitalTaipeiTaiwan

Personalised recommendations