Estimation of Lake Level Using Tiangong-2 InIRA Data

  • Jingjuan LiaoEmail author
  • Hui Xue
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 541)


Tiangong-2 space laboratory, launched on 15 September, 2016, carries an Interferometric Imaging Radar Altimeter (InIRA). InIRA can conduct interferometry of ocean and land with high precision and wide swath. In this study, nine Qinghai-Tibet Plateau lakes are selected to analyze the preliminary performance of lake level estimation using the InIRA data. Based on bias and standard deviation of estimated lake level, the lake levels obtained from InIRA Level1 data (InIRA lake levels) are compared with the lake levels directly derived from Cryosat-2 Synthetic Aperture Radar interferometry (SARin) Level1b (L1b) data, and the accurate lake levels obtained from the retracking Cryosat-2 SARin L1b data. The results show that the bias of absolute InIRA lake levels is 4.105 m, and the mean standard deviation of InIRA point lake levels is 1.063 m. It indicates that InIRA Level1 data is more stable than Cryosat-2 SARin L1b data and relative lake levels with high precision can be expected to estimate using the further processed InIRA data.


Tiangong-2 InIRA Cryosat-2 Lake level estimation 



This research was funded by the National Key Research and Development Program of China (2016YFB0501501), and the National Natural Science Foundation of China (41871256). We thank the China Manned Space Engineering for providing the InIRA data products of Tiangong-2.


  1. 1.
    Crétaux, J.F., Birkett, C.: Lake studies from satellite radar altimetry. Comptes Rendus Geosci. 338(14–15), 1098–1112 (2006)CrossRefGoogle Scholar
  2. 2.
    Birkett, C.M.: The contribution of TOPEX/POSEIDON to the global monitoring of climatically sensitive lakes. J. Geophys. Res. Atmos. 100(C12), 25179–25204 (1995)CrossRefGoogle Scholar
  3. 3.
    Morris, C.S., Gill, S.K.: Evaluation of the TOPEX/POSEIDON altimeter system over the Great Lakes. J. Geophys. Res. Ocean. 99(C12), 24527–24539 (1994)CrossRefGoogle Scholar
  4. 4.
    Gao, L., Liao, J., Shen, G.: Monitoring lake-level changes in the Qinghai-Tibetan Plateau using radar altimeter data (2002–2012). J. Appl. Remote Sens. 7(1), 073470 (2013)CrossRefGoogle Scholar
  5. 5.
    Liao, J., Gao, L., Wang, X.: Numerical simulation and forecasting of water level for qinghai lake using multi-altimeter data between 2002 and 2012. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 7(7), 609–622 (2014)CrossRefGoogle Scholar
  6. 6.
    Jiang, L., Nielsen, K., Andersen, O.B., Bauer-Gottwein, P.: Monitoring recent lake level variations on the Tibetan Plateau using CryoSat-2 SARIn mode data. J. Hydrol. 544, 109–124 (2017)CrossRefGoogle Scholar
  7. 7.
    Crétaux, J.F., Abarca-Del-Río, R., Bergé-Nguyen, M., et al.: Lake volume monitoring from space. Surv. Geophys. 37(2), 269–305 (2016)CrossRefGoogle Scholar
  8. 8.
    Xu, Y., Gao, L., Zhang, Y.: New generation altimetry satellite SWOT and its reference to China’s swath altimetry satellite. Remote. Sens. Technol. Appl. 32(1), 84–94 (2017). (In Chinese)Google Scholar
  9. 9.
    Sui, X., Zhang, R., Wan, X.: Research on microwave interferometric altimetry systems and performances. Spacecr. Eng. 25(2), 13–18 (2016). (In Chinese)Google Scholar
  10. 10.
    Nielsen, K., Stenseng, L., Andersen, O.B., Villadsen, H., Knudsen, P.: Validation of CryoSat-2 SAR mode based lake levels. Remote Sens. Environ. 171, 162–170 (2015)CrossRefGoogle Scholar
  11. 11.
    Villadsen, H., Deng, X., Andersen, O.B., Stenseng, L., Nielsen, K., Knudsen, P.: Improved inland water levels from SAR altimetry using novel empirical and physical retrackers. J. Hydrol. 537, 234–247 (2016)CrossRefGoogle Scholar
  12. 12.
    Göttl, F., Dettmering, D., Müller, F., et al.: Lake level estimation based on CryoSat-2 SAR altimetry and multi-looked waveform classification. Remote. Sens. 8(11), 885–901 (2016)CrossRefGoogle Scholar
  13. 13.
    Kleinherenbrink, M., Ditmar, P., Lindenbergh, R.: Retracking cryosat data in the SARin mode and robust lake level extraction. Remote Sens. Environ. 152, 38–50 (2014)CrossRefGoogle Scholar
  14. 14.
    Kleinherenbrink, M., Lindenbergh, R.C., Ditmar, P.G.: Monitoring of lake level changes on the Tibetan Plateau and Tian Shan by retracking Cryosat SARIn waveforms. J. Hydrol. 521, 119–131 (2015)CrossRefGoogle Scholar
  15. 15.
    Tourian, M., Elmi, O., Chen, Q., Devaraju, B., Roohi, S., Sneeuw, N.: A spaceborne multisensor approach to monitor the desiccation of Lake Urmia in Iran. Remote Sens. Environ. 156, 349–360 (2015)CrossRefGoogle Scholar
  16. 16.
    Villadsen, H., Andersen, O.B., Stenseng, L., Nielsen, K., Knudsen, P.: CryoSat-2 altimetry for river level monitoring—evaluation in the Ganges-Brahmaputra river basin. Remote Sens. Environ. 168, 80–89 (2015)CrossRefGoogle Scholar
  17. 17.
    Bao, Q., Lin, M., Zhang, Y., et al.: Wind speed inversion for imaging microwave altimeter. J. Remote. Sens. 21(6), 835–841 (2017). (In Chinese)Google Scholar
  18. 18.
    European Space Agency (ESA). CryoSat-2 Product Handbook[OL].
  19. 19.
    Wan, W., Xiao, P., Feng, X., et al.: Monitoring lake changes of Qinghai-Tibet Plateau over the past 30 years using satellite remote sensing data. Chin. Sci. Bull. 8(8), 701–714 (2014)Google Scholar
  20. 20.
    Gao, L.: Monitoring the changes in lake level and glacier elevation in the Qinghai-Tibet Plateau using satellite altimetry data. Ph.D. Dissertation of University of Chinese Academy of Sciences (2014). (In Chinese)Google Scholar
  21. 21.
    He, P.: Some methods of deleting inordinate values from measuring data. Aviat. Metrol. Meas. Technol. 15(1), 19–22 (1995). (In Chinese)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Key Laboratory of Digital Earth ScienceInstitute of Remote Sensing and Digital Earth, Chinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations