Downscaling of Tiangong-2 Land Surface Temperature

  • Ren Luo
  • Ji ZhouEmail author
  • Jiajia Yang
  • Lijiao Ai
  • Yilong Feng
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 541)


Tiangong-2 is equipped with a new generation of earth observation instrument, i.e. Wide-band Imaging Spectrometer (WIS), which has a wide range and multiple spatial resolutions with visible and near infrared bands (VNIR, 100 m), shortwave infrared bands (SWIR, 200 m) and thermal infrared bands (TIR, 400 m). It provides the possibility to retrieve land surface temperature (LST) with a 400 m spatial resolution. However, such a spatial resolution limit the applications of TIR spectrum range of WIS in many fields. This study reports the downscaling of LST derived from Tiangong-2 WIS from 400 m to 100 m by utilizing different bands of Tiangong-2 WIS. Specifically, different downscaling methods are compared. Results shows that it is possible to downscale the 400 m LST to a 100 m resolution. Furthermore, the Random Forest (RF) method outperforms the traditional DisTrad method and the Multiple Linear Regression (MLR) method in LST downscaling. The downscaled LST at 100 m can satisfy applications such as the urban heat island monitoring, evapotranspiration calculation and environment modeling.


Land surface temperature Downscaling Random Forest Wide-band Imaging Spectrometer (WIS) Tiangong-2 



Thanks to China Manned Space Engineering for providing space science and application data products of Tiangong-2. This study is supported by the National Key Research and Development Program of China under grant 2017YFB0503905.


  1. 1.
    Wan, Z., Wang, P., Li, X.: Using MODIS land surface temperature and normalized difference vegetation index products for monitoring drought in the southern great plains. USA. Int. J. Remote Sens. 25, 61–72 (2004)CrossRefGoogle Scholar
  2. 2.
    Norouzi, H., Bah, A., Prakash, S., Nouri, N., Blake, R.: Downscaling satellite land surface temperatures in urban regions for surface energy balance study and heat index development. In: AGU Fall Meeting (2017)Google Scholar
  3. 3.
    Han, Y., Wang, Y., Zhao, Y.: Estimating soil moisture conditions of the greater Changbai mountains by land surface temperature and NDVI. IEEE Trans. Geosci. Remote Sens. 48, 2509–2515 (2010)CrossRefGoogle Scholar
  4. 4.
    Voogt, J.A., Oke, T.R.: Thermal remote sensing of urban climates. Remote Sens. Environ. 86, 370–384 (2003)CrossRefGoogle Scholar
  5. 5.
    Quattrochi, D.A., Luvall, J.C.: Thermal infrared remote sensing for analysis of landscape ecological processes: methods and applications. Landscape Ecol. 14, 577–598 (1999)CrossRefGoogle Scholar
  6. 6.
    TG-2 Homepage. Accessed 15 Sep 2018
  7. 7.
    Kustas, W.P., Norman, J.M., Anderson, M.C., French, A.N.: Estimating subpixel surface temperatures and energy fluxes from the vegetation index–radiometric temperature relationship. Remote Sens. Environ. 85, 429–440 (2003)CrossRefGoogle Scholar
  8. 8.
    Zhan, W., Chen, Y., Zhou, J., Wang, J., Liu, W., Voogt, J., Zhu, X., Quan, J., Li, J.: Disaggregation of remotely sensed land surface temperature: Literature survey, taxonomy, issues, and caveats. Remote Sens. Environ. 131, 119–139 (2013)CrossRefGoogle Scholar
  9. 9.
    Lemeshewsky, G.P., Schowengerdt, R.A.: Landsat 7 thermal-IR image sharpening using an artificial neural network and sensor model. In: Aerospace/Defense Sensing, Simulation, and Controls, pp. 181–192 (2001)Google Scholar
  10. 10.
    Pereira, O., Melfi, A., Montes, C., Lucas, Y.: Downscaling of ASTER thermal images based on geographically weighted regression kriging. Remote Sens. 10, 633 (2018)CrossRefGoogle Scholar
  11. 11.
    Hutengs, C., Vohland, M.: Downscaling land surface temperatures at regional scales with random forest regression. Remote Sens. Environ. 178, 127–141 (2016)CrossRefGoogle Scholar
  12. 12.
    Li, X., Cheng, G., Liu, S., Xiao, Q., Ma, M., Jin, R., Che, T., Liu, Q., Wang, W., Qi, Y., Wen, J., Li, H., Zhu, G., Guo, J., Ran, Y., Wang, S., Zhu, Z., Zhou, J., Hu, X., Xu, Z.: Heihe watershed allied telemetry experimental research (HiWATER): scientific objectives and experimental design. Bull. Am. Meteor. Soc. 94, 1145–1160 (2013)CrossRefGoogle Scholar
  13. 13.
    Liu, S.M., Xu, Z.W., Wang, W.Z., Jia, Z.Z., Zhu, M.J., Bai, J., Wang, J.M.: A comparison of eddy-covariance and large aperture scintillometer measurements with respect to the energy balance closure problem. Hydrol. Earth Syst. Sci. 15, 1291–1306 (2011)CrossRefGoogle Scholar
  14. 14.
    Zhou, J., Li, M., Liu, S., Jia, Z., Ma, Y.: Validation and performance evaluations of methods for estimating land surface temperatures from ASTER data in the middle reach of the Heihe River Basin. Northwest China. Remote Sensing. 7, 7126–7156 (2015)CrossRefGoogle Scholar
  15. 15.
    Ulivieri, C., Castronuovo, M.M., Francioni, R., Cardillo, A.: A split window algorithm for estimating land surface temperature from satellites. Adv. Space Res. 14, 59–65 (1994)CrossRefGoogle Scholar
  16. 16.
    Zhou, J., Liang, S., Cheng, J., Wang, Y., Ma, J.: The GLASS land surface temperature product. IEEE J. Sel. Topics Appl. Earth Observations Remote Sens., 1–15 (2018)Google Scholar
  17. 17.
    Wan, Z.: New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product. Remote Sens. Environ. 140, 36–45 (2014)CrossRefGoogle Scholar
  18. 18.
    Zhou, J., Liu, S., Li, M., Zhan, W., Xu, Z., Xu, T.: Quantification of the scale effect in downscaling remotely sensed land surface temperature. Remote Sensing. 8, 975 (2016)CrossRefGoogle Scholar
  19. 19.
    Ding, L., Zhou, J., Zhang, X., Liu, S., Cao, R.: Downscaling of surface air temperature over the Tibetan Plateau based on DEM. Int. J. Appl. Earth Obs. Geoinf. 73, 136–147 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Ren Luo
    • 1
  • Ji Zhou
    • 1
    Email author
  • Jiajia Yang
    • 1
  • Lijiao Ai
    • 2
  • Yilong Feng
    • 2
  1. 1.School of Resources and EnvironmentCenter for Information Geoscience, University of Electronic Science and Technology of ChinaChengduChina
  2. 2.Chongqing Landscape and Gardening Research InstituteChongqingChina

Personalised recommendations