Advertisement

On-Orbit Polarization Calibration of the Multi-angle Polarization Imager Based on Sunglint Over the Ocean

  • Junjie Guo
  • Zhigang Yao
  • Zhigang Han
  • Zengliang Zhao
  • Jun Jiang
  • Wei Yan
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 541)

Abstract

The Multi-angle Polarization Imager (MAI) is the first multi-angle polarization imaging instrument operating in orbit in China. It is important to the development of the polarized remote sensing technology. This study uses on-orbit polarization calibration of the MAI based on sunglint over the ocean to determine the accuracy of the MAI data and to lay the foundations for the study of clouds and aerosols using this instrument. The retrieved degree of polarization at the top of atmosphere (TOA) is in good agreement with the degree of polarization simulated by the Second Simulation of a Satellite Signal in the Solar Spectrum – Vector (6SV) radiation transfer mode with a correlation coefficient of 0.992 and a method uncertainty of <1%. The calibration pixels are selected by combining the theoretical analysis and 6SV simulation, and the MAI on-orbit polarization calibration test is carried out using the selected pixels. There is good agreement between the retrieved degree of polarization at the TOA and the measured degree of polarization by the MAI, with a correlation coefficient of 0.9576, an average absolute deviation of 6.06%, and a standard deviation of the difference between the retrieved degree of polarization and the measured degree of polarization of 1.29%. The method of on-orbit polarization calibration based on sunglint over the ocean can realize on-orbit polarization monitoring and calibration of the MAI.

Keywords

Tiangong-2 Multi-angle polarization remote sensing On-orbit calibration The sunglint over the ocean 6SV Degree of polarization 

Notes

Acknowledgments

Thanks to China Manned Space Engineering for providing space science and application data products of Tiangong-2. This work was co-supported by the TG-2 Mission of the Manned Space Flight Project, the National Natural Science Foundation of China (NSFC41575031), and the China Postdoctoral Science Foundation (2015M580124).

References

  1. 1.
    Gong, J.Q., Zhan, H.G., Liu, D.Z.: A review on polarization information in the remote sensing detection. Spectrosc. Spectr. Anal. 30(4), 1088–1095 (2010)Google Scholar
  2. 2.
    Deschamps, P.Y., Breon, F.M., Leroy, M., Podaire, A., Bricaud, A., Buriez, J.C., Seze, G.: The POLDER mission: instrument characteristics and scientific objectives. IEEE Trans. Geosci. Remote Sens. 32(3), 598–615 (1994)CrossRefGoogle Scholar
  3. 3.
    Bretdibat, T., Andre, A., Laherrere, J.M.: Preflight calibration of the POLDER instrument. In: Proceedings of SPIE - The International Symposium on Optical Science, Engineering, and Instrumentation, pp. 218–231 (1995)Google Scholar
  4. 4.
    Han, Z.G.: Aerosol retrievals over steppe with POLDER data- simulation model system and preliminary tests. Doctor, The Institute of Atmospheric Physics, Chinese Academy of Sciences (1999)Google Scholar
  5. 5.
    Chen, H.B., Fan, X.H., Han, Z.G.: A review on remote sensing from POLDER multispectral, multidirectional and polarized measurements. Remote. Sens. Technol. Appl. 21(2), 83–92 (2006)Google Scholar
  6. 6.
    Duan, M.Z., Lü, D.R.: Simultaneously retrieving aerosol optical depth and surface albedo over land from POLDER’s multi-angle polarized measurement. II: a case study. Chin. J. Atmos. Sci. 31(5), 757–765 (2008)Google Scholar
  7. 7.
    Fan, X.H., Chen, H.B., Lin, L.F., Han, Z.G., Goloub, P.: Retrieval of aerosol optical properties over the Beijing area using POLDER/PARASOL satellite polarization measurements. Adv. Atmos. Sci. 26(6), 1099–1107 (2009)CrossRefGoogle Scholar
  8. 8.
    Fan, X.H., Chen, H.B., Lin, L.F., Han, Z.G., Goloub, P.: Validation of POLDER-2/PARASOL aerosol products over Beijing area. J. Remote Sens. 13(1), 137–144 (2009)Google Scholar
  9. 9.
    Yao, Z.G., Han, Z.G., Zhao, Z.L., Lin, L.F., Fan, X.H.: Synergetic use of POLDER and MODIS for multilayered cloud identification. Remote Sens. Environ. 114(9), 1910–1923 (2010)CrossRefGoogle Scholar
  10. 10.
    Goloub, P., Toubbe, B., Herman, M., Bailleul, T., Hagolle, O., Martinuzzi, J.M., Rouge, B.: In-flight polarization calibration of POLDER. In: Advanced and Next-Generation Satellites II. International Society for Optics and Photonics, pp. 299–310 (1997)Google Scholar
  11. 11.
    Toubbé, B., Bailleul, T., Deuzé, J.L., Goloub, P., Hagolle, O., Herman, M.: In-flight calibration of the POLDER polarized channels using the Sun’s glitter. IEEE Trans. Geosci. Remote Sens. 37, 513–524 (1999)CrossRefGoogle Scholar
  12. 12.
    Guo, J.J., Yao, Z.G., Han, Z.G., Zhao, Z.L, Yin, D.K., Yan, W.: Airborne experiment of TG-2 multi-angle polarization imager for cloud phase identification. Remote Sens. Technol. Appl. 33(3), 439–448 (2018)Google Scholar
  13. 13.
    Guo, J.J., Yao, Z.G., Han, Z.G., Zhao, Z.L, Yan, W.: Inter-calibration for TG-2/MAI visible band based on Metop-B/GOME-2. Spectroscopy and Spectral Analysis, AcceptedGoogle Scholar
  14. 14.
    Guo, J.J., Yao, Z.G., Han, Z.G., Zhao, Z.L, Yan, W.: TG-2/MAI CCD dark current characteristics and channel dependence analysis and correction. Chinese Journal of Lasers, AcceptedGoogle Scholar
  15. 15.
    Cox, C., Munk, W.: Measurement of the roughness of the sea surface from photographs of the Sun’s glitter. J. Opt. Soc. Am. B 44(11), 838–850 (1954)CrossRefGoogle Scholar
  16. 16.
    Patel, P.N., Bhatt, H., Mathur, A.K., Prajapati, R.P., Tyagi, G.: Reflectance-based vicarious calibration of INSAT-3D using high-reflectance ground target. Remote Sens. Appl. Soc. & Environ. 3, 20–35 (2016)Google Scholar
  17. 17.
    Lu, J.Y., He, M., Chen, L., Xu, X., Li, X.: Automated radiation calibration method based on dunhuang radiometric calibration site. Acta Opt. Sin. 37(8), 0801003 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Junjie Guo
    • 1
    • 2
    • 3
  • Zhigang Yao
    • 2
    • 3
  • Zhigang Han
    • 2
    • 3
  • Zengliang Zhao
    • 2
    • 3
  • Jun Jiang
    • 2
    • 3
  • Wei Yan
    • 1
  1. 1.College of Meteorology and OceanologyNational University of Defense TechnologyNanjingChina
  2. 2.State Key Laboratory of Geo-Information EngineeringXi’anChina
  3. 3.Beijing Institute of Applied MeteorologyBeijingChina

Personalised recommendations