Cross-Calibration of S-NPP/VIIRS and Tiangong-2/MAI Visible Channels Using the SNO Method

  • Jun Jiang
  • Zhigang HanEmail author
  • Zhigang Yao
  • Zengliang Zhao
  • Junjie Guo
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 541)


The space laboratory “Tiangong-2” (TG-2) was launched on 15 September 2016. The Multi-Angle Polarization Imager (MAI), onboard TG-2, is the first visible and near-infrared multi-angle polarization imager developed in China. MAI can accomplish polarization observation from up to 14 different viewing angles, which is of great significance for relevant research on the microphysical characteristics of clouds and aerosols. Aimed at the problem of a lack of an onboard calibration device for MAI, to correct TG-2’s calibration coefficients in time, the Simultaneous Nadir Overpass (SNO) cross-calibration method is proposed as a reasonable and feasible method for MAI 565- and 670-nm channels. Data from the M4 and M5 channels of the Visible Infrared Imaging Radiometer Suite (VIIRS), with good calibration accuracy, are used as reference data, and a series of matching conditions and a spectral adjustment algorithm are specified. To apply the SNO method, eight groups of examples from December 2016 to February 2017 are selected, and a large number of matching pixel samples covering land, ocean surface, and cloud layers are obtained. The resulting cross-calibration curves between MAI 565-nm and VIIRS M4 channels, and between MAI 670-nm and VIIRS M5 channels, show correlation coefficients of reflectivity of 0.986 and 0.994, mean biases of 2.48% and 5.90%, and RMSEs of 3.56% and 6.95%, respectively. Overall, the cross-calibration method achieved good results, which are of reference significance to correct the laboratory calibration coefficient of MAI. The proposed method effectively solves the problems of MAI’s subsequent on-orbit monitoring and vicarious calibration, and also lays a foundation for later applications of MAI data in research on cloud and aerosol microphysical parameters.


Tiangong-2 Cross-calibration SNO method MAI VIIRS Visible channels 



Thanks to China Manned Space Engineering for providing the MAI data products of Tiangong-2. This work was co-supported by the TG-2 Mission of the Manned Space Flight Project, the National Natural Science Foundation of China (NSFC41575031), and the China Postdoctoral Science Foundation (2015M580124).


  1. 1.
    Wenbin, X., Xiaobing, Z., Weining, Y.: Cross-calibration method based on hyperspectral imager hyperion. Acta Opt. Sin. 33(5), 279–286 (2013)CrossRefGoogle Scholar
  2. 2.
    Guanhua, Z., He, J., Huijie, Z., et al.: Imaging spectrometry radiometric cross-calibration based on precise spectral response matching. Spectrosc. Spectr. Anal. 32(12), 3416–3421 (2012)Google Scholar
  3. 3.
    Chander, G., Hewison, T.J., Fox, N., et al.: Overview of intercalibration of satellite instruments. IEEE Trans. Geosci. Remote Sens. 51(3), 1056–1080 (2013)CrossRefGoogle Scholar
  4. 4.
    Xiong, X., Cao, C., Chander, G.: An overview of sensor calibration inter-comparison and applications. Front Earth Sci. China 4(2), 237–252 (2010)CrossRefGoogle Scholar
  5. 5.
    Boming, X.: Meteorological Satellite Payload Technology. China Astronautic Publishing House, Beijing (2005)Google Scholar
  6. 6.
    Heidinger, A.K., Cao, C., Sullivan, J.T.: Using moderate resolution imaging spectrometer (MODIS) to calibrate advanced very high resolution radiometer reflectance channels. J. Geophys. Res. Atmos. 107(D23), AAC-1-AAC 11-10 (2002)Google Scholar
  7. 7.
    Thome, K.J., Biggar, S.F., Wisniewski, W.: Cross comparison of EO-1 sensors and other earth resources sensors to Landsat-7 ETM+ using Railroad Valley Playa. IEEE Trans. Geosci. Remote Sens. 41(6), 1180–1188 (2003)CrossRefGoogle Scholar
  8. 8.
    Rao, C.R.N., Cao, C., Zhang, N.: Inter-calibration of the moderate-resolution imaging spectro radiometer and the along track scanning Radiometer-2. Int. J. Remote Sens. 24(9), 1913–1924 (2003)CrossRefGoogle Scholar
  9. 9.
    Meirink, J.F., Roebeling, R.A., Stammes, P.: Inter-calibration of polar imager solar channels using SEVIRI. Atmos. Meas. Tech. 6(9), 2495–2508 (2013)CrossRefGoogle Scholar
  10. 10.
    Xu, N., Chen, L., Wu, R., et al.: In-flight intercalibration of FY-3C visible channels with AQUA MODIS. In: SPIE Asia-Pacific Remote Sensing, International Society for Optics and Photonics, pp. 163–176 (2014)Google Scholar
  11. 11.
    Yu, F., Wu, X.: Radiometric inter-calibration between Himawari-8 AHI and S-NPP VIIRS for the solar reflective bands. Remote Sens. 8(3), 165 (2016)CrossRefGoogle Scholar
  12. 12.
    Junjie, G., Yaozhigang, H.Z., et al.: Airborne experiment of TG-2 multi-angle polarization imager for cloud phase identification. Remote Sens. Technol. Appl. 33(3), 439–448 (2018)Google Scholar
  13. 13.
    Lee, T.E., Miller, S.D., Turk, F.J., et al.: The NPOESS VIIRS day/night visible sensor. Bull. Am. Meteor. Soc. 87(2), 191–199 (2006)CrossRefGoogle Scholar
  14. 14.
    Xiong, X., Angal, A., Butler, J., et al.: Global space-based inter-calibration system reflective solar calibration reference: from Aqua MODIS to S-NPP VIIRS. In: SPIE Asia-Pacific Remote Sensing, p. 98811D (2016)Google Scholar
  15. 15.
    Goldberg, M., Ohring, G., Butler, J., et al.: The global space-based inter-calibration system. Bull. Am. Meteor. Soc. 92(4), 467–475 (2011)CrossRefGoogle Scholar
  16. 16.
    Xiong, X., Salomonson, V., Barnes, W., et al.: An overview of terra MODIS reflective solar bands on-orbit calibration. In: IEEE International Conference on Geoscience and Remote Sensing Symposium, pp. 1111–1114 (2006)Google Scholar
  17. 17.
    Lei, N., Wang, Z., Xiong, X.: On-orbit radiometric calibration of Suomi NPP VIIRS reflective solar bands through observations of a sunlit solar diffuser panel. IEEE Trans. Geosci. Remote Sens. 53(11), 5983–5990 (2015)CrossRefGoogle Scholar
  18. 18.
    Wolfe, R.E., Lin, G., Nishihama, M., et al.: Suomi NPP VIIRS prelaunch and on-orbit geometric calibration and characterization. J. Geophys. Res. Atmos. 118(20), 11508–11521 (2013)CrossRefGoogle Scholar
  19. 19.
    Vallado, D., Crawford, P.: SGP4 orbit determination. In: AIAA/AAS Astrodynamics Specialist Conference and Exhibit, pp. 558–570 (2008)Google Scholar
  20. 20.
    O’Brien, D.M., Mitchell, R.M.: An error budget for cross-calibration of AVHRR shortwave channels against ATSR-2. Remote Sens. Environ. 75(2), 216–229 (2001)CrossRefGoogle Scholar
  21. 21.
    Chang, T., Xiong, X., Angal, A., et al.: Aqua and Terra MODIS RSB calibration comparison using BRDF modeled reflectance. IEEE Trans. Geosci. Remote Sens. 55(4), 2288–2298 (2017)CrossRefGoogle Scholar
  22. 22.
    Teillet, P.M., Fedosejevs, G., Thome, K.J., et al.: Impacts of spectral band difference effects on radiometric cross-calibration between satellite sensors in the solar-reflective spectral domain. Remote Sens. Environ. 110(3), 393–409 (2007)CrossRefGoogle Scholar
  23. 23.
    Chander, G., Mishra, N., Helder, D.L., et al.: Applications of spectral band adjustment factors (SBAF) for cross-calibration. IEEE Trans. Geosci. Remote Sens. 51(3), 1267–1281 (2013)CrossRefGoogle Scholar
  24. 24.
    Doelling, D.R., Lukashin, C., Minnis, P., et al.: Spectral reflectance corrections for satellite intercalibrations using SCIAMACHY data. IEEE Geosci. Remote Sens. Lett. 9(1), 119–123 (2011)CrossRefGoogle Scholar
  25. 25.
    Munro, R., Lang, R., Klaes, D., et al.: The GOME-2 instrument on the Metop series of satellites: instrument design, calibration, and level 1 data processing–an overview. Polym. Int. 8(8), 8645–8700 (2016)Google Scholar
  26. 26.
    Hagolle, O., Goloub, P., Deschamps, P.Y., et al.: Results of POLDER in-flight calibration. IEEE Trans Geosci. Remote. Sens. 37(3), 1550–1566 (1999)CrossRefGoogle Scholar
  27. 27.
    Fougnie, B., Bracco, G., Lafrance, B., et al.: PARASOL in-flight calibration and performance. Appl. Opt. 46(22), 5435–5451 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Jun Jiang
    • 1
  • Zhigang Han
    • 1
    Email author
  • Zhigang Yao
    • 1
  • Zengliang Zhao
    • 1
  • Junjie Guo
    • 1
    • 2
  1. 1.Beijing Institute of Applied MeteorologyBeijingChina
  2. 2.College of Meteorology and OceanologyNational University of Defense TechnologyNanjingChina

Personalised recommendations