Advertisement

Results and Discussion

  • Fadzil Noor Gonawan
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

This chapter is divided into several parts. In the first part, the effect of reaction parameters on the A. oryzae β-Gal-catalyzed conversion of lactose was discussed. Subsequently, a complete study was carried out in order to prepare HFMR with immobilized β-Gal. Then, the effect of operating parameters on the immobilized β-Gal-catalyzed conversion of lactose in the HFMR was discussed. The kinetic model for β-Gal-catalyzed conversion of lactose was proposed, and the effect of the substrate concentration on the kinetic parameters was investigated. Finally, the significance of mass transfer characteristic on the reaction performance was justified with the result obtained from the coupled mass transfer and kinetic model which solved in COMSOL®.

References

  1. 1.
    Albayrak N, Yang ST (2002a) Immobilization of β-galactosidase on fibrous matrix by polyethyleneimine for production of galacto-oligosaccharides from lactose. Biotechnol Prog 18(2):240–251PubMedGoogle Scholar
  2. 2.
    Albayrak N, Yang ST (2002b) Production of galacto-oligosaccharides from lactose by Aspergillus oryzae β-galactosidase immobilized on cotton cloth. Biotechnol Bioeng 77(1):8–19PubMedGoogle Scholar
  3. 3.
    Ansari SA, Husain Q (2012) Lactose hydrolysis from milk/whey in batch and continuous processes by concanavalin A-Celite 545 immobilized Aspergillus oryzae β galactosidase. Food Bioprod Process 90(2):351–359Google Scholar
  4. 4.
    Bahulekar R, Ayyangar N, Ponrathnam S (1991) Polyethyleneimine in immobilization of biocatalysts. Enzyme Microbial Technol 13(11):858–868CrossRefGoogle Scholar
  5. 5.
    Barbosa O, Ortiz C, Berenguer-Murcia Á, Torres R, Rodrigues RC, Fernandez-Lafuente R (2014) Glutaraldehyde in bio-catalysts design: a useful crosslinker and a versatile tool in enzyme immobilization. RSC Adv 4(4):1583–1600CrossRefGoogle Scholar
  6. 6.
    Boon M, Janssen A, Van der Padt A (1999) Modelling and parameter estimation of the enzymatic synthesis of oligosaccharides by β-galactosidase from Bacillus circulans. Biotechnol Bioeng 64(5):558–567PubMedCrossRefGoogle Scholar
  7. 7.
    Bruins M, Strubel M, Van Lieshout J, Janssen A, Boom R (2003) Oligosaccharide synthesis by the hyperthermostable β-glucosidase from Pyrococcus furiosus: kinetics and modelling. Enzyme Microbial Technol 33(1):3–11CrossRefGoogle Scholar
  8. 8.
    Chan C, Bérubé P, Hall E (2011) Relationship between types of surface shear stress profiles and membrane fouling. Water Res 45(19):6403–6416PubMedCrossRefGoogle Scholar
  9. 9.
    Chang S, Fane AG (2015) Techniques to enchance performance of liquid-phase membrane processes by improved control of concentration polarization. In: Pabby AK, Rizvi SSH, Requena AMS (eds) Handbook of membrane separations: chemical, pharmaceutical, food, and biotechnological applications, 2nd edn. Taylor & Francis, Florida, pp 261–262Google Scholar
  10. 10.
    Chapman B, Jarvis A (2003) Organic chemistry, energetics, kinetics and equilibrium. Nelson Thornes, CheltenhamGoogle Scholar
  11. 11.
    Chellam S, Wiesner MR (1997) Particle back-transport and permeate flux behavior in crossflow membrane filters. Environ Sci Technol 31(3):819–824CrossRefGoogle Scholar
  12. 12.
    Cohen Y (1988) Hydrodynamic thickness of adsorbed polymers in steady shear flow. Macromolecules 21(2):494–499CrossRefGoogle Scholar
  13. 13.
    Czermak P, Ebrahimi M, Grau K, Netz S, Sawatzki G, Pfromm PH (2004) Membrane-assisted enzymatic production of galactosyl-oligosaccharides from lactose in a continuous process. J Membr Sci 232(1):85–91CrossRefGoogle Scholar
  14. 14.
    Das R, Sen D, Sarkar A, Bhattacharyya S, Bhattacharjee C (2010) A comparative study on the production of galacto-oligosaccharide from whey permeate in recycle membrane reactor and in enzymatic batch reactor. Ind Eng Chem Res 50(2):806–816CrossRefGoogle Scholar
  15. 15.
    Dekker RF (1989) Immobilization of a lactase onto a magnetic support by covalent attachment to polyethyleneimine-glutaraldehyde-activated magnetite. Appl Biochem Biotechnol 22(3):289–310PubMedCrossRefGoogle Scholar
  16. 16.
    Di Luccio M, Smith B, Kida T, Borges C, Alves T (2000) Separation of fructose from a mixture of sugars using supported liquid membranes. J Membr Sci 174(2):217–224CrossRefGoogle Scholar
  17. 17.
    Drews A (2010) Membrane fouling in membrane bioreactors—characterisation, contradictions, cause and cures. J Membr Sci 363(1):1–28CrossRefGoogle Scholar
  18. 18.
    Engel L, Schneider P, Ebrahimi M, Czermak P (2007) Immobilization of β-galactosidase in adsorptive membranes for the continuous production of galacto-oligosaccharides from lactose. Open Food Sci J 1:17–23CrossRefGoogle Scholar
  19. 19.
    Foda MI, Lopez-Leiva M (2000) Continuous production of oligosaccharides from whey using a membrane reactor. Process Biochem 35(6):581–587CrossRefGoogle Scholar
  20. 20.
    Freitas FF, Marquez LD, Ribeiro GP, Brandão GC, Cardoso VL, Ribeiro EJ (2011) A comparison of the kinetic properties of free and immobilized Aspergillus oryzae β-galactosidase. Biochem Eng J 58:33–38CrossRefGoogle Scholar
  21. 21.
    Güleç H, Gürdaş S, Albayrak N, Mutlu M (2010) Immobilization of Aspergillus oryzae β-galactosidase on low-pressure plasma-modified cellulose acetate membrane using polyethyleneimine for production of galactooligosaccharide. Biotechnol Bioproc E 15(6):1006–1015CrossRefGoogle Scholar
  22. 22.
    Güleç HA (2013) Immobilization of β-galactosidase from Kluyveromyces lactis onto polymeric membrane surfaces: effect of surface characteristics. Colloids Surf B 104:83–90CrossRefGoogle Scholar
  23. 23.
    Huerta LM, Vera C, Guerrero C, Wilson L, Illanes A (2011) Synthesis of galacto-oligosaccharides at very high lactose concentrations with immobilized β-galactosidases from Aspergillus oryzae. Process Biochem 46(1):245–252CrossRefGoogle Scholar
  24. 24.
    Ismail A, Hassan A (2006) Formation and characterization of asymmetric nanofiltration membrane: effect of shear rate and polymer concentration. J Membr Sci 270(1):57–72CrossRefGoogle Scholar
  25. 25.
    Iwasaki K-i, Nakajima M, Nakao S-i (1996) Galacto-oligosaccharide production from lactose by an enzymic batch reaction using β-galactosidase. Process Biochem 31(1):69–76CrossRefGoogle Scholar
  26. 26.
    Jochems P, Satyawali Y, Van Roy S, Doyen W, Diels L, Dejonghe W (2011) Characterization and optimization of β-galactosidase immobilization process on a mixed-matrix membrane. Enzyme Microbial Technol 49(6):580–588CrossRefGoogle Scholar
  27. 27.
    Jurado E, Camacho F, Luzon G, Vicaria J (2002) A new kinetic model proposed for enzymatic hydrolysis of lactose by a β-galactosidase from Kluyveromyces fragilis. Enzyme Microbial Technol 31(3):300–309CrossRefGoogle Scholar
  28. 28.
    Jurado E, Camacho F, Luzon G, Vicaria J (2004) Kinetic model for lactose hydrolysis in a recirculation hollow-fibre bioreactor. Chem Eng Sci 59(2):397–405CrossRefGoogle Scholar
  29. 29.
    Kim CS, Ji E-S, Oh D-K (2004) A new kinetic model of recombinant β-galactosidase from Kluyveromyces lactis for both hydrolysis and transgalactosylation reactions. Biochem Biophys Res Commun 316(3):738–743PubMedCrossRefGoogle Scholar
  30. 30.
    Lesk A (2010) Introduction to protein science: architecture, function, and genomics, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  31. 31.
    Li N, Giorno L, Drioli E (2003) Effect of immobilization site and membrane materials on multiphasic enantiocatalytic enzyme membrane reactors. Ann N Y Acad Sci 984(1):436–452PubMedCrossRefGoogle Scholar
  32. 32.
    Lineweaver H, Burk D (1934) The determination of enzyme dissociation constants. J Am Chem Soc 56(3):658–666CrossRefGoogle Scholar
  33. 33.
    Marangoni AG (2003) Enzyme kinetics: a modern approach. Wiley, New JerseyGoogle Scholar
  34. 34.
    Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R (2007) Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microbial Technol 40(6):1451–1463CrossRefGoogle Scholar
  35. 35.
    Mehler AH (2014) Introduction to enzymology. Academic Press, New YorkGoogle Scholar
  36. 36.
    Nath A, Bhattacharjee C, Chowdhury R (2013) Synthesis and separation of galacto-oligosaccharides using membrane bioreactor. Desalination 316:31–41CrossRefGoogle Scholar
  37. 37.
    Neri DF, Balcão VM, Carneiro-da-Cunha MG, Carvalho LB Jr, Teixeira JA (2008) Immobilization of β-galactosidase from Kluyveromyces lactis onto a polysiloxane–polyvinyl alcohol magnetic (mPOS–PVA) composite for lactose hydrolysis. Catal Commun 9(14):2334–2339CrossRefGoogle Scholar
  38. 38.
    Neri DF, Balcão VM, Costa RS, Rocha IC, Ferreira EM, Torres DP, Rodrigues LR, Carvalho LB, Teixeira JA (2009) Galacto-oligosaccharides production during lactose hydrolysis by free Aspergillus oryzae β-galactosidase and immobilized on magnetic polysiloxane-polyvinyl alcohol. Food Chem 115(1):92–99CrossRefGoogle Scholar
  39. 39.
    Neri DFM, Balcão VM, Dourado FOQ, Oliveira JMB, Carvalho LB Jr, Teixeira JA (2011) Immobilized β-galactosidase onto magnetic particles coated with polyaniline: support characterization and galactooligosaccharides production. J Mol Catal B Enzym 70(1–2):74–80CrossRefGoogle Scholar
  40. 40.
    Ochoa J-C, Coufort C, Escudié R, Liné A, Paul E (2007) Influence of non-uniform distribution of shear stress on aerobic biofilms. Chem Eng Sci 62(14):3672–3684CrossRefGoogle Scholar
  41. 41.
    Palai T, Bhattacharya PK (2013) Kinetics of lactose conversion to galacto-oligosaccharides by β-galactosidase immobilized on PVDF membrane. J Biosci Bioeng 115(6):668–673PubMedCrossRefGoogle Scholar
  42. 42.
    Palai T, Mitra S, Bhattacharya PK (2012) Kinetics and design relation for enzymatic conversion of lactose into galacto-oligosaccharides using commercial grade β-galactosidase. J Biosci Bioeng 114(4):418–423PubMedCrossRefGoogle Scholar
  43. 43.
    Pan C, Hu B, Li W, Sun Y, Ye H, Zeng X (2009) Novel and efficient method for immobilization and stabilization of β-d-galactosidase by covalent attachment onto magnetic Fe3O4–chitosan nanoparticles. J Mol Catal B Enzym 61(3–4):208–215CrossRefGoogle Scholar
  44. 44.
    Park A-R, Oh D-K (2010) Galacto-oligosaccharide production using microbial β-galactosidase: current state and perspectives. Appl Microbiol Biotechnol 85(5):1279–1286PubMedCrossRefGoogle Scholar
  45. 45.
    Park Y, Santi M, Pastore G (1979) Production and characterization of β-galactosidase from Aspergillus oryzae. J Food Sci 44(1):100–103CrossRefGoogle Scholar
  46. 46.
    Portaccio M, Stellato S, Rossi S, Bencivenga U, Eldin MM, Gaeta F, Mita D (1998) Galactose competitive inhibition of β-galactosidase (Aspergillus oryzae) immobilized on chitosan and nylon supports. Enzyme Microbial Technol 23(1):101–106CrossRefGoogle Scholar
  47. 47.
    Sen D, Sarkar A, Gosling A, Gras SL, Stevens GW, Kentish SE, Bhattacharya PK, Barber AR, Bhattacharjee C (2011) Feasibility study of enzyme immobilization on polymeric membrane: a case study with enzymatically galacto-oligosaccharides production from lactose. J Membr Sci 378(1–2):471–478CrossRefGoogle Scholar
  48. 48.
    Shukla H, Chaplin M (1993) No competitive inhibition of β-galactosidase (A. oryzae) by galactose. Enzyme Microbial Technol 15 (4):297–299CrossRefGoogle Scholar
  49. 49.
    Singh R (2014) Membrane technology and engineering for water purification: application, systems design and operation, 2nd edn. Elsevier, LondonGoogle Scholar
  50. 50.
    Smith MB (2010) Organic chemistry: an acid-base approach. Taylor & Francis Group, LondonCrossRefGoogle Scholar
  51. 51.
    Tan X, Tan S, Teo W, Li K (2006) Polyvinylidene fluoride (PVDF) hollow fibre membranes for ammonia removal from water. J Membr Sci 271(1):59–68CrossRefGoogle Scholar
  52. 52.
    Tashvigh AA, Fouladitajar A, Ashtiani FZ (2015) Modeling concentration polarization in crossflow microfiltration of oil-in-water emulsion using shear-induced diffusion; CFD and experimental studies. Desalination 357:225–232CrossRefGoogle Scholar
  53. 53.
    Tokošová S, Hronská H, Rosenberg M (2015) Production of galacto-oligosaccharides by commercial preparates of fungal β-galactosidase. Acta Chim Slovaca 8(2):101–106CrossRefGoogle Scholar
  54. 54.
    Ulbricht M, Riedel M, Marx U (1996) Novel photochemical surface functionalization of polysulfone ultrafiltration membranes for covalent immobilization of biomolecules. J Membr Sci 120(2):239–259CrossRefGoogle Scholar
  55. 55.
    Urrutia P, Br Rodriguez-Colinas, Fernandez-Arrojo L, Ballesteros AO, Wilson L, As Illanes, Plou FJ (2013) Detailed analysis of galactooligosaccharides synthesis with β-galactosidase from Aspergillus oryzae. J Agric Food Chem 61(5):1081–1087CrossRefGoogle Scholar
  56. 56.
    Van Rantwijk F, Woudenberg-van Oosterom M, Sheldon R (1999) Glycosidase-catalysed synthesis of alkyl glycosides. J Mol Catal B Enzym 6(6):511–532CrossRefGoogle Scholar
  57. 57.
    Vera C, Guerrero C, Conejeros R, Illanes A (2012) Synthesis of galacto-oligosaccharides by β-galactosidase from Aspergillus oryzae using partially dissolved and supersaturated solution of lactose. Enzyme Microbial Technol 50(3):188–194CrossRefGoogle Scholar
  58. 58.
    Vera C, Guerrero C, Illanes A, Conejeros R (2011) A pseudo steady-state model for galacto-oligosaccharides synthesis with β-galactosidase from Aspergillus oryzae. Biotechnol Bioeng 108(10):2270–2279PubMedCrossRefGoogle Scholar
  59. 59.
    Vera C, Guerrero C, Illanes A, Conejeros R (2014) Fed-batch synthesis of galacto-oligosaccharides with Aspergillus oryzae β-galactosidase using optimal control strategy. Biotechnol Prog 30(1):59–67PubMedCrossRefGoogle Scholar
  60. 60.
    Wang Y-N, Tang CY (2011) Nanofiltration membrane fouling by oppositely charged macromolecules: investigation on flux behavior, foulant mass deposition, and solute rejection. Environ Sci Technol 45(20):8941–8947PubMedCrossRefGoogle Scholar
  61. 61.
    Weetall HH, Havewala NB, Pitcher WH, Detar CC, Vann WP, Yaverbaum S (1974) The preparation of immobilized lactase and its use in the enzymatic hydrolysis of acid whey. Biotechnol Bioeng 16(3):295–313CrossRefGoogle Scholar
  62. 62.
    Wray HE, Andrews RC, Bérubé PR (2013) Surface shear stress and membrane fouling when considering natural water matrices. Desalination 330:22–27CrossRefGoogle Scholar
  63. 63.
    Yon-Kahn J, Hervé G (2010) Molecular and cellular enzymology, vol I. Springer, HeidelbergCrossRefGoogle Scholar
  64. 64.
    Yujun W, Jian X, Guangsheng L, Youyuan D (2008) Immobilization of lipase by ultrafiltration and cross-linking onto the polysulfone membrane surface. Biores Technol 99(7):2299–2303CrossRefGoogle Scholar
  65. 65.
    Zhang S, Gao S, Gao G (2010) Immobilization of β-galactosidase onto magnetic beads. Appl Biochem Biotechnol 160(5):1386–1393PubMedCrossRefGoogle Scholar
  66. 66.
    Zhou QZ, Chen XD, Li X (2003) Kinetics of lactose hydrolysis by β-galactosidase of Kluyveromyces lactis immobilized on cotton fabric. Biotechnol Bioeng 81(2):127–133PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of Chemical EngineeringUniversiti Sains MalaysiaPenangMalaysia

Personalised recommendations