A Multiband Octagonal Slot Patch Antenna for Various Wireless Applications

  • Anshul JainEmail author
  • Uma Shankar Modani


Keeping under thought request of multiband execution, a scaled down octagonal slot rectangular patch antenna is proposed adopting defected ground structure. Reenacted on FR4 (Ɛr = 4.4), the extent of proposed configuration is 30 × 35 × 1.6 mm. The radiator is triggered by a 50 Ω microstrip feed line. The antenna spread out its energy in three bands viz. IEEE 802.11b/Bluetooth; HiperLAN2 and IEEE802.11a/WiMAX. Different traits, for example, return loss, surface current, radiation pattern and VSWR are additionally analyzed and discussed


Octagonal slot Microstrip patch Multiband Wireless applications 


  1. 1.
    Pattnaik, S. S., Panda, D. C., & Devi, S. (2002). Radiation resistance of coax-fed rectangular microstrip patch antenna using artificial neural networks. Microwave and Optical Technology Letters, 34(15), 51–53.CrossRefGoogle Scholar
  2. 2.
    Dechamps, G., & Sichak, W. (1953). Microstrip microwave antennas. In Proceedings of Third Symposium on USAF Antenna Research and Development Program, 18–22 October 1953.Google Scholar
  3. 3.
    Munson, R. E. (1972). Microstrip phased array antennas. In Proceedings of Twenty-Second Symposium on USAF Antenna Research and Development Program, October 1972.Google Scholar
  4. 4.
    Munson, R. E. (1974). Conformal microstrip antennas and microstrip phased arrays. IEEE Transactions on Antennas and Propagation, AP-22(1), 74–78.CrossRefGoogle Scholar
  5. 5.
    Sanchez-Hernandez, D., & Robertson, I. D. (1996). A survey of broadband microstrip patch antennas. Microwave Journal, 60–84.Google Scholar
  6. 6.
    Neog, D. K., Pattnaik, S. S., Panda, D. C., Devi, S., Khuntia, B., & Dutta, M. (2005). Design of a wideband microstrip antenna and the use of artificial neural networks in parameter calculation. IEEE Antennas and Propagation Magazine, 47(3) (June 2005).CrossRefGoogle Scholar
  7. 7.
    Yang, F., Zhang, X., Ye, X., & Rahmat- Samii, Y. (2001). Wide-band E shaped patch antenna as for wireless communication. IEEE Transactions on Antennas and Propagation, 49(7), 1094–1100.CrossRefGoogle Scholar
  8. 8.
    Ge, Y., Esselle, K., & Bird, T. (2004). E-shaped patch antennas for high speed wireless networks. IEEE Transactions on Antennas and Propagation, 52(12), 3213–3219.CrossRefGoogle Scholar
  9. 9.
    Yang, F., Zhang, X., Ye, X., & Rahmat-Samii, Y. (2001). Wide–band E shaped patch antennas for wireless communication. IEEE Transactions on Antennas and Propogation, 49(7), 1094–1100.CrossRefGoogle Scholar
  10. 10.
    Patel, S. S., & Kosta, Y. P. (2011). Multiband PBG suspended patch antenna. In 3rd International Conference on Electronics and Computer Techology (Vol. 2, p. 59).Google Scholar
  11. 11.
    Ryu, H. C., ahn, H. R., Lee, S. H., & Park, W. S. (2002). Triple-stacked microstrip patch antenna for multiband system. Electronics Letters, 38(24), 1496–1497.CrossRefGoogle Scholar
  12. 12.
    Muthili, P., Cherian, P., Mridula, S., & Paul, D. (2009). Design of a compact multi-band microstrip antenna. In: 2009 Annual India Conference, pp. 1–4.Google Scholar
  13. 13.
    Cheng, S., Hallbjorner, P., & Rydberg, (2008). A printed slot planar inverted cone antenna for ultra wideband applications. IEEE Antennas Wireless Propagation Letters, 7, 411–413.CrossRefGoogle Scholar
  14. 14.
    Peroulis, D., Sarabandi, K., & Katehi, L. B. P. (2005). Design of reconfigurable slot antennas. IEEE Transactions on Antennas Propagation, 53(7), 645–654.CrossRefGoogle Scholar
  15. 15.
    Okabe, H., Takei, K. (2001). Tunable antenna system for 1.9 GHz PCS handsets. In IEEE Antennas and Propagation Society International Symposium (Vol. 1, pp. 166169).Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Govt. Engineering CollegeAjmerIndia

Personalised recommendations