Influence of Crystal Phase and Orientation on Electrical Properties of InAs Nanowires

  • Mengqi FuEmail author
Part of the Springer Theses book series (Springer Theses)


In this chapter, a systematic study on the correlation of the electrical properties with the crystal phase and orientation of single-crystal InAs nanowires (NWs) grown by molecular-beam epitaxy. A new method is developed to allow the same InAs NW to be used for both the electrical measurements and transmission electron microscopy characterization. We find both the crystal phase, wurtzite (WZ) or zinc-blende (ZB), and the orientation of the InAs NWs remarkably affect the electronic properties of the field effect transistors based on these NWs, such as the threshold voltage (VT), ON-OFF ratio, subthreshold swing (SS) and effective barrier height at the off-state (ΦOFF). The SS increases while VT, ON-OFF ratio and ΦOFF decrease one by one in the sequence of WZ <0001>, ZB <131>, ZB <332>, ZB <121> and ZB <011>. The WZ InAs NWs have obvious smaller field-effect mobility, conductivities and electron concentration at VBG = 0 V than the ZB InAs NWs, these parameters are not sensitive to the orientation of the ZB InAs NWs. We also find the diameter ranging from 12 to 33 nm shows much less effect than the crystal phase and orientation on the electrical properties of the InAs NWs. The good ohmic contact between InAs NWs and metal remains regardless of the variation of the crystal phase and orientation through temperature dependent measurements. Our work promotes deeper understanding of InAs NWs and is important for the development of nanowire-based devices.


InAs nanowires Electrical properties Crystal phase Crystal orientation Nano-manipulation 


  1. 1.
    Dick KA, Thelander C, Samuelson L et al (2010) Crystal phase engineering in single InAs nanowires. Nano Lett 10(9):3494–3499ADSCrossRefGoogle Scholar
  2. 2.
    Trägårdh J, Persson AI, Wagner JB et al (2007) Measurements of the band gap of wurtzite InAs1−xPx nanowires using photocurrent spectroscopy. J Appl Phys 101(12):123701ADSCrossRefGoogle Scholar
  3. 3.
    Dayeh SA, Susac D, Kavanagh KL et al (2009) Structural and room-temperature transport properties of zinc blende and wurtzite InAs nanowires. Adv Func Mater 19(13):2102–2108CrossRefGoogle Scholar
  4. 4.
    De A, Pryor CE (2010) Predicted band structures of III-V semiconductors in the wurtzite phase. Phys Rev B 81(15):155210ADSCrossRefGoogle Scholar
  5. 5.
    Thelander C, Caroff P, Plissard SB et al (2011) Effects of crystal phase mixing on the electrical properties of InAs nanowires. Nano Lett 11(6):2424–2429Google Scholar
  6. 6.
    Ullah AR, Joyce HJ, Burke AM et al (2013) Electronic comparison of InAs wurtzite and zincblende phases using nanowire transistors. Physica Status Solidi—Rapid Res Lett 7(10):911–914Google Scholar
  7. 7.
    Hjort M, Lehmann S, Knutsson J et al (2014) Electronic and structural differences between wurtzite and zinc blende InAs nanowire surfaces: experiment and theory. ACS Nano 8(12):12346–12355CrossRefGoogle Scholar
  8. 8.
    Ning F, Tang L-M, Zhang Y et al (2013) First-principles study of quantum confinement and surface effects on the electronic properties of InAs nanowires. J Appl Phys 114(22):224304ADSCrossRefGoogle Scholar
  9. 9.
    Shimoida K, Yamada Y, Tsuchiya H et al (2013) Orientational dependence in device performances of InAs and Si nanowire MOSFETs under ballistic transport. IEEE Trans Electron Devices 60(1):117–122ADSCrossRefGoogle Scholar
  10. 10.
    Alam K, Sajjad RN (2010) Electronic properties and orientation-dependent performance of InAs nanowire transistors. IEEE Trans Electron Devices 57(11):2880–2885ADSCrossRefGoogle Scholar
  11. 11.
    Dick KA, Thelander C, Samuelson L et al (2010) Crystal phase engineering in single InAs nanowires. Nano Lett 10(9):3494–3499ADSCrossRefGoogle Scholar
  12. 12.
    Ullah AR, Joyce HJ, Burke AM et al (2013) Electronic comparison of InAs wurtzite and zincblende phases using nanowire transistors. Physica Status Solidi—Rapid Res Lett 7(10):911–914Google Scholar
  13. 13.
    Pan D, Fu M, Yu X et al (2014) Controlled synthesis of phase-pure InAs nanowires on Si(111) by diminishing the diameter to 10 nm. Nano Lett 14(3):1214–1220ADSCrossRefGoogle Scholar
  14. 14.
    Peng LM, Chen Q, Liang XL et al (2004) Performing probe experiments in the SEM. Micron 35(6):495–502CrossRefGoogle Scholar
  15. 15.
    Wei X, Chen Q, Peng L et al (2010) In situ measurements on individual thin carbon nanotubes using nanomanipulators inside a scanning electron microscopy. Ultramicroscopy 110(3):182–189CrossRefGoogle Scholar
  16. 16.
    Shi T, Fu M, Pan D et al (2015) Contact properties of field-effect transistors based on indium arsenide nanowires thinner than 16 nm. Nanotechnology 26(17):175202ADSCrossRefGoogle Scholar
  17. 17.
    Fu M, Pan D, Yang Y et al (2014) Electrical characteristics of field-effect transistors based on indium arsenide nanowire thinner than 10 nm. Appl Phys Lett 105(14):143101ADSCrossRefGoogle Scholar
  18. 18.
    Samiei E, Hoorfar M (2015) Systematic analysis of geometrical based unequal droplet splitting in digital microfluidics. J Micromech Microeng 25(5):055008CrossRefGoogle Scholar
  19. 19.
    Sourribes MJ, Isakov I, Panfilova M et al (2014) Mobility enhancement by Sb-mediated minimisation of stacking fault density in InAs nanowires grown on silicon. Nano Lett 14(3):1643–1650ADSCrossRefGoogle Scholar
  20. 20.
    Blömers C, Grap T, Lepsa MI et al (2012) Hall effect measurements on InAs nanowires. Appl Phys Lett 101(15):152106ADSCrossRefGoogle Scholar
  21. 21.
    Olsson LO, Andersson CBM, Hakansson MC et al (1996) Charge accumulation at InAs surfaces. Phys Rev Lett 76(19):3626–3629ADSCrossRefGoogle Scholar
  22. 22.
    Appenzeller J, Radosavljević M, Knoch J et al (2004) Tunneling versus thermionic emission in one-dimensional semiconductors. Phys Rev Lett 92(4)Google Scholar
  23. 23.
    Razavieh A, Mohseni PK, Jung K et al (2014) Effect of diameter variation on electrical characteristics of Schottky barrier indium arsenide nanowire field-effect transistors. ACS Nano 8(6):6281–6287CrossRefGoogle Scholar
  24. 24.
    Mead C, Spitzer W (1963) Fermi level position at semiconductor surfaces. Phys Rev Lett 10(11):471–472ADSCrossRefGoogle Scholar
  25. 25.
    Zhao Y, Candebat D, Delker C et al (2012) Understanding the impact of Schottky barriers on the performance of narrow bandgap nanowire field effect transistors. Nano Lett 12(10):5331–5336ADSCrossRefGoogle Scholar
  26. 26.
    Niquet Y, Lherbier A, Quang N et al (2006) Electronic structure of semiconductor nanowires. Phys Rev B 73(16)Google Scholar
  27. 27.
    Cui Z, Perumal R, Ishikura T et al (2014) Characterizing the electron transport properties of a single <110> InAs nanowire. Appl Phys Express 7(8):085001ADSCrossRefGoogle Scholar
  28. 28.
    Hilner E, Hakanson U, Froberg LE et al (2008) Direct atomic scale imaging of III-V nanowire surfaces. Nano Lett 8(11):3978–3982ADSCrossRefGoogle Scholar
  29. 29.
    Dayeh SA, Aplin DP, Zhou X et al (2007) High electron mobility InAs nanowire field-effect transistors. Small 3(2):326–332CrossRefGoogle Scholar
  30. 30.
    Xu H, Wang Y, Guo Y et al (2012) Defect-free <110> zinc-blende structured InAs nanowires catalyzed by palladium. Nano Lett 12(11):5744–5749ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of KonstanzKonstanzGermany

Personalised recommendations