Fortified Offspring Fuzzy Neural Networks Algorithm

  • Kefaya QaddoumEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 937)


Our research here suggests a fortified Offspring fuzzy neural networks (FOFNN) classifier developed with the aid of Fuzzy C-Means (FCM). The objective of this study concerns the selection of preprocessing techniques for the dimensionality reduction of input space. Principal component analysis (PCA) algorithm presents a pre-processing phase to the network to shape the low-dimensional input variables. Subsequently, the effectual step to handle uncertain information by type-2 fuzzy sets using Fuzzy C-Means (FCM) clustering. The proposition (condition) phase of the rules is formed by two FCM clustering algorithms, which are appealed by spending distinct values of the fuzzification coefficient successively resulting in valued type-2 membership functions. The simultaneous parametric optimization of the network by the evolutionary algorithm is finalized. The suggested classifier is applied to some machine learning datasets, and the results are compared with those provided by other classifiers reported in the literature.


Fuzzy C-Means Fuzzy neural networks Artificial bee colony Principal Component Analysis Type-2 fuzzy set 


  1. 1.
    Lippman, R.P.: An introduction to computing with neural nets. IEEE ASSP Mag. 4, 4–22 (1981)CrossRefGoogle Scholar
  2. 2.
    Mali, K., Mitra, S.: Symbolic classification, clustering and fuzzy radial basis function network. Fuzzy Sets Syst. 152, 553–564 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Huang, W., Oh, S.-K., Pedrycz, W.: Design of Offspring radial basis function neural networks (HRBFNNs) realized with the aid of hybridization of fuzzy clustering method (FCM) and polynomial neural networks (PNNs). Neural Netw. 60, 66–181 (2014)CrossRefGoogle Scholar
  4. 4.
    Buckley, J.J., Hayashi, Y.: Fuzzy neural networks: a survey. Fuzzy Sets Syst. 66, 1–13 (1994)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Gupta, M.M., Rao, D.H.: On the principles of fuzzy neural networks. Fuzzy Sets Syst. 61(1), 1–18 (1994)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)zbMATHCrossRefGoogle Scholar
  7. 7.
    Zadeh, L.A.: Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. Syst. Man Cybern. 3, 28–44 (1973)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Zimmermann, H.-J.: Fuzzy Set Theory and Its Applications. Kluwer, Norwell (1996)zbMATHCrossRefGoogle Scholar
  9. 9.
    Lee, B.-K., Jeong, E.-H., Lee, S.-S.: Context-awareness healthcare for disease reasoning based on fuzzy logic. J. Electr. Eng. Technol. 11(1), 247–256 (2016)CrossRefGoogle Scholar
  10. 10.
    Nguyen, D.D., Ngo, L.T., Pham, L.T., Pedrycz, W.: Towards Offspring clustering approach to data classification: multiple kernels based interval-valued Fuzzy C-Means algorithm. Fuzzy Sets Syst. 279(1), 17–39 (2015)zbMATHCrossRefGoogle Scholar
  11. 11.
    Karaboga, D., Akay, B.: Artificial bee colony (ABC), harmony search and bees algorithms on numerical optimization. In: 2009 Innovative Production Machines and Systems Virtual Conference (2009)Google Scholar
  12. 12.
    Wu, G.D., Zhu, Z.W.: An enhanced discriminability recurrent fuzzy neural network for temporal classification problems. Fuzzy Sets Syst. 237(1), 47–62 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Karnik, N.N., Mendel, J.M.: Operations on type-2 fuzzy sets. Fuzzy Sets Syst. 122(2), 327–348 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Runkler, T., Coupland, S., John, R.: Type-2 fuzzy decision making. Int. J. Approx. Reason. 80, 217–224 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Dash, R., Dash, P.K., Bisoi, R.: A differential harmony search based Offspring interval type2 fuzzy EGARCH model for stock market volatility prediction. Int. J. Approx. Reason. 59, 81–104 (2015)zbMATHCrossRefGoogle Scholar
  16. 16.
    Karnik, N.N., Mendel, J.M.: Centroid of a type-2 fuzzy set. Inf. Sci. 132, 195–220 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Livi, L., Tahayori, H., Rizzi, A., Sadeghian, A., Pedrycz, W.: Classification of type-2 fuzzy sets represented as sequences of vertical slices. IEEE Trans. Fuzzy Syst. 24(5), 1022–1034 (2016)CrossRefGoogle Scholar
  18. 18.
    Ekong, U., et al.: Classification of epilepsy seizure phase using type-2 fuzzy support vector machines. Neurocomputing 199, 66–76 (2016)CrossRefGoogle Scholar
  19. 19.
    Salazar, O., Soriano, J.: Convex combination and its application to fuzzy sets and interval-valued fuzzy sets II. Appl. Math. Sci. 9(22), 1069–1076 (2015)Google Scholar
  20. 20.
    Hwang, C., Rhee, F.: Uncertain fuzzy clustering: the type-2 fuzzy approach to C-Means. IEEE Trans. Fuzzy Syst. 15(1), 107–120 (2007)CrossRefGoogle Scholar
  21. 21.
    Rhee, F.: Uncertain fuzzy clustering: insights and recommendations. IEEE Comput. Intell. Mag. 2(1), 44–56 (2007)CrossRefGoogle Scholar
  22. 22.
    McLachlan, G.J.: Discriminant Analysis and Statistical Pattern Recognition. Wiley-Interscience, Hoboken (2004)zbMATHGoogle Scholar
  23. 23.
    Jolliffe, I.T.: Principal Component Analysis. Springer, New York (2002). Scholar
  24. 24.
    Daqi, G., Jun, D., Changming, Z.: Integrated Fisher linear discriminants: an empirical study. Pattern Recogn. 47(2), 789–805 (2014)zbMATHCrossRefGoogle Scholar
  25. 25.
    Li, L., Qiao, Z., Liu, Y., Chen, Y.: A convergent smoothing algorithm for training max-min fuzzy neural networks. Neurocomputing 260, 404–410 (2017)CrossRefGoogle Scholar
  26. 26.
    Lin, C.-M., Le, T.-L., Huynh, T.-T.: Self-evolving function-link type-2 fuzzy neural network for nonlinear system identification and control. Neurocomputing 275, 2239–2250 (2018)CrossRefGoogle Scholar
  27. 27.
    Wu, D., Mendel, J.M.: Enhanced Karnik–Mendel algorithm for type-2 fuzzy sets and systems. In: Fuzzy Information Processing Society, pp. 184–189 (2007)Google Scholar
  28. 28.
    Mendel, J.M.: Introduction to Rule-Based Fuzzy Logic System. Prentice-Hall, Upper Saddle River (2001)zbMATHGoogle Scholar
  29. 29.
    Kennedy, J., Eberhart, R.: Phase swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks IV, pp. 1942–1948 (1995)Google Scholar
  30. 30.
    Liu, F., Mendel, J.M.: Aggregation using the fuzzy weighted average, as calculated by the KM algorithms. IEEE Trans. Fuzzy Syst. 16, 1–12 (2008)CrossRefGoogle Scholar
  31. 31.
    Oh, S.-K., Kim, W.-D., Pedrycz, W., Park, B.-J.: Polynomial-based radial basis function neural networks (P-RBF NNs) realized with the aid of phase swarm optimization. Fuzzy Sets Syst. 163(1), 54–77 (2011)zbMATHCrossRefGoogle Scholar
  32. 32.
  33. 33.
    Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995). Scholar
  34. 34.
    Tipping, M.E.: The relevance vector machine. Adv. Neural. Inf. Process. Syst. 12, 652–658 (2000)Google Scholar
  35. 35.
    Yang, Z.R.: A novel radial basis function neural network for discriminant analysis. IEEE Trans. Neural Netw. 17(3), 604–612 (2006)CrossRefGoogle Scholar
  36. 36.
    Tahir, M.A., Bouridane, A., Kurugollu, F.: Simultaneous feature selection and feature weighting using Offspring Tabu Search/K-nearest neighbor classifier. Pattern Recogn. Lett. 28(4), 438–446 (2007)CrossRefGoogle Scholar
  37. 37.
    Mei, J.P., Chen, L.: Fuzzy clustering with weighted medoids for relational data. Pattern Recogn. 43(5), 1964–1974 (2010)zbMATHCrossRefGoogle Scholar
  38. 38.
    Oh, S.K., Kim, W.-D., Pedrycz, W.: Design of radial basis function neural network classifier realized with the aid of data preprocessing techniques: design and analysis. Int. J. Gen. Syst. 45(4), 434–454 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Ulu, C., Guzelkaya, M., Eksin, I.: A closed-form type reduction method for piece wise linear type-2 fuzzy sets. Int. J. Approx. Reason. 54, 1421–1433 (2013)zbMATHCrossRefGoogle Scholar
  40. 40.
    Chen, Y., Wang, D., Tong, S.: Forecasting studies by designing Mamdani type-2 fuzzy logic systems: with the combination of BP algorithms and KM algorithms. Neurocomputing 174(Phase B), 1133–1146 (2016)CrossRefGoogle Scholar
  41. 41.
    Qiao, J.-F., Hou, Y., Zhang, L., Han, H.-G.: Adaptive fuzzy neural network control of wastewater treatment process with a multiobjective operation. Neurocomputing 275, 383–393 (2018)CrossRefGoogle Scholar
  42. 42.
    Han, H.-G., Lin, Z.-L., Qiao, J.-F.: Modeling of nonlinear systems using the self-organizing fuzzy neural network with adaptive gradient algorithm. Neurocomputing 266, 566–578 (2017)CrossRefGoogle Scholar
  43. 43.
    Lu, X., Zhao, Y., Liu, M.: Self-learning type-2 fuzzy neural network controllers for trajectory control of a Delta parallel robot. Neurocomputing 283, 107–119 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Higher Colleges of TechnologyAbu Dhabi, Al AinUAE

Personalised recommendations