Advertisement

Contribution of the Gut and Vaginal Microbiomes to Gynecological Cancers

  • R. S. Jayshree
  • Rekha V. Kumar
Chapter

Abstract

The objective of the current chapter is to give insights into the different ways by which microbiota in the gastrointestinal and the lower genital tract can promote gynecological malignancies. Microbes have coevolved with humans over millions of years and form an essential part of the normal flora in certain parts of the body. While a healthy site comprises optimal proportions and/or types of microbes termed as “eubiosis”, disease as represented by disproportion in either numbers and/or types of microbes is called “dysbiosis”. While eubiosis is absolutely required for normal physiology, e.g., the development and functioning of the immune system and homeostasis at the colonized site, the role of dysbiosis in causing various diseases like obesity, diabetes, autoimmunity, and cancers has been appreciated only recently. Microbes comprise one of the major factors, which determine whether there would be “war” or “peace” at specific sites. Gut dysbiosis may predispose a woman toward developing gynecological cancers by regulating circulating levels of estrogen and/or other metabolites like melatonin or by modulating inflammation at the systemic level. Cervicovaginal microflora regulate the local microenvironment of the tissues, and so, dysbiosis may assist establishment of oncogenic pathogens, prolonged inflammation, and/or immunosuppression, each of which contribute toward oncogenesis. From the perspective of prevention of gynecological malignancies, consumption of diets rich in phytochemicals, timely intervention in the treatment of genital infections, and maintaining eubiosis both at the gastrointestinal and cervicovaginal mucosa may certainly help.

Keywords

Microbiome Cervical cancer Ovarian cancer Endometrial cancer Estrobolome Estrogen Hormones Melatonin Dysbiosis Bacterial vaginosis Phytoestrogens Diet Malignancy Prevention Microflora Genital infections 

Notes

Acknowledgments

We wish to acknowledge the help of Mr. G. R. Chandran, Project Management Consultant in making the figures; Prof. Rita Christopher, Department of Neurochemistry, National Institute of Mental Health and Neurosciences; and Dr. Sandhya Ravi, Consultant Surgeon and Managing Director, Prameya Health Pvt. Ltd., Bangalore, for reviewing the chapter and for offering useful suggestions.

References

  1. 1.
    Ursell LK, Metcalf JL, Parfrey LW, Knight R. Defining the human microbiome. Nutr Rev. 2012;70:S38–44.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Savage DC. Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol. 1977;31:107–33.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, et al. Metagenomic analysis of the human distal gut microbiome. Science. 2006;312:1355–9.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Schwabe RF, Jobin C. The microbiome and cancer. Nat Rev Cancer. 2013;13:800–12.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell. 2006;124:837–48.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Turnbaugh PJ, Gordon JI. The core gut microbiome, energy balance and obesity. J Physiol. 2009;587:4153–8.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Hehemann JH, Correc G, Barbeyron T, Helbert W, Czjzek M, Michel G. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature. 2010;464:908–12.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Relman DA. The human microbiome: ecosystem resilience and health. Nutr Rev. 2012;70:S2–9.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The human microbiome project. Nature. 2007;449:804–10.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Liang D, Leung RK, Guan W, Au WW. Involvement of gut microbiome in human health and disease: brief overview, knowledge gaps and research opportunities. Gut Pathog. 2018;10:3.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Peterson CT, Denniston K, Chopra D. Therapeutic uses of Triphala in Ayurvedic medicine. J Altern Complement Med. 2017;23:607–14.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Eswaran HT, Kavita MB, Tripaty TB, Shivakumar. Formation and validation of questionnaire to assess Jātharāgni. Anc Sci Life. 2015;34:203–9.Google Scholar
  13. 13.
    Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell. 2014;157:121–41.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Baker JM, Al-Nakkash L, Herbst-Kralovetz MM. Estrogen-gut microbiome axis: physiological and clinical implications. Maturitas. 2017;103:45–53.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Trompette A, Gollwitzer ES, Yadava K, Sichelstiel AK, Sprenger N, Ngom-Bru C, et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med. 2014;20:159–66.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Guo Y, Qi Y, Yang X, Zhao L, Wen S, Liu Y, et al. Association between polycystic ovary syndrome and gut microbiota. PLoS One. 2016;11:e0153196.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Markle JG, Frank DN, Mortin-Toth S, Robertson CE, Feazel LM, Rolle-Kampczyk U, et al. Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science. 2013;339:1084–8.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Plottel CS, Blaser MJ. Microbiome and malignancy. Cell Host Microbe. 2011;10:324–35.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC, et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci U S A. 2009;106:3698–703.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027–31.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell. 2009;139:485–98.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Wu HJ, Ivanov II, Darce J, Hattori K, Shima T, Umesaki Y, et al. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity. 2010;32:815–27.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Mazmanian SK, Round JL, Kasper DL. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature. 2008;453:620–5.CrossRefGoogle Scholar
  24. 24.
    Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y, Nishikawa H, et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature. 2013;500:232–6.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Round JL, Mazmanian SK. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci U S A. 2010;107:12204–9.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Gao J, Xu K, Liu H, Liu G, Bai M, Peng C, et al. Impact of the gut microbiota on intestinal immunity mediated by tryptophan metabolism. Front Cell Infect Microbiol. 2018;8:13.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Huang T, Wei B, Velazquez P, Borneman J, Braun J. Commensal microbiota alter the abundance and TCR responsiveness of splenic naive CD4+ T lymphocytes. Clin Immunol. 2005;117:221–30.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Ostman S, Rask C, Wold AE, Hultkrantz S, Telemo E. Impaired regulatory T cell function in germ-free mice. Eur J Immunol. 2006;36:2336–46.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Belkaid Y, Naik S. Compartmentalized and systemic control of tissue immunity by commensals. Nat Immunol. 2013;14:646–53.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Rutkowski MR, Stephen TL, Svoronos N, Allegrezza MJ, Tesone AJ, Perales-Puchalt A, et al. Microbially driven TLR5-dependent signaling governs distal malignant progression through tumor-promoting inflammation. Cancer Cell. 2015;27:27–40.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Casanova JL, Abel L, Quintana-Murci L. Human TLRs and IL-1Rs in host defense: natural insights from evolutionary, epidemiological, and clinical genetics. Annu Rev Immunol. 2011;29:447–91.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Hawn TR, Verbon A, Lettinga KD, Zhao LP, Li SS, Laws RJ, et al. A common dominant TLR5 stop codon polymorphism abolishes flagellin signaling and is associated with susceptibility to legionnaires’ disease. J Exp Med. 2003;198:1563–72.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Oakley OR, Kim KJ, Lin PC, Barakat R, Cacioppo JA, Li Z, et al. Estradiol synthesis in gut-associated lymphoid tissue: leukocyte regulation by a sexually monomorphic system. Endocrinology. 2016;157:4579–87.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Barakat R, Oakley O, Kim H, Jin J, Ko CJ. Extra-gonadal sites of estrogen biosynthesis and function. BMB Rep. 2016;49:488–96.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Tai P, Wang J, Jin H, Song X, Yan J, Kang Y, et al. Induction of regulatory t cells by physiological level estrogen. J Cell Physiol. 2008;214:456–64.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Polanczyk MJ, Carson BD, Subramanian S, Afentoulis M, Vandenbark AA, Ziegler SF, et al. Cutting edge: estrogen drives expansion of the cd4+cd25+ regulatory t cell compartment. J Immunol. 2004;173:2227–30.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Polanczyk MJ, Hopke C, Vandenbark AA, Offner H. Treg suppressive activity involves estrogen dependent expression of programmed death-1 (PD-1). Int Immunol. 2007;19:337–43.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Adurthi S, Kumar MM, Vinodkumar HS, Mukherjee G, Krishnamurthy H, Acharya KK, et al. Oestrogen Receptor-α binds the FOXP3 promoter and modulates regulatory T-cell function in human cervical cancer. Sci Rep. 2017;7:17289–304.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Svensson S, Abrahamsson A, Rodriguez GV, Olsson AK, Jensen L, Cao Y, et al. CCL2 and CCL5 are novel therapeutic targets for estrogen-dependent breast cancer. Clin Cancer Res. 2015;21:3794–805.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Svoronos N, Perales-Puchalt A, Allegrezza MJ, Rutkowski MR, Payne KK, Tesone AJ, et al. Tumor cell-independent estrogen signaling drives disease progression through mobilization of myeloid-derived suppressor cells. Cancer Discov. 2017;7:72–85.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Jiang X, Orr BA, Kranz DM, Shapiro DJ. Estrogen induction of the granzyme B inhibitor, proteinase inhibitor 9, protects cells against apoptosis mediated by cytotoxic T lymphocytes and natural killer cells. Endocrinology. 2006;147:1419–26.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Chen KL, Madak-Erdogan Z. Estrogen and microbiota crosstalk: should we pay attention? Trends Endocrinol Metab. 2016;27:752–5.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Grady D, Gebretsadik T, Kerlikowske K, Ernster V, Petitti D. Hormone replacement therapy and endometrial cancer risk: a meta-analysis. Obstet Gynecol. 1995;85:304–13.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Guo RX, Wei LH, Tu Z, Sun PM, Wang JL, Zhao D, et al. 17 beta-estradiol activates PI3K/Akt signaling pathway by estrogen receptor (ER)-dependent and ER-independent mechanisms in endometrial cancer cells. J Steroid Biochem Mol Biol. 2006;99:9–18.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Zhang Y, Zhao D, Gong C, Zhang F, He J, Zhang W, et al. Prognostic role of hormone receptors in endometrial cancer: a systematic review and meta-analysis. World J Surg Oncol. 2015;13:208.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Lacey JV, Mink PJ, Lubin JH, Sherman ME, Troisi R, Hartge P, et al. Menopausal hormone replacement therapy and risk of ovarian cancer. J Am Med Assoc. 2002;288:334–41.CrossRefGoogle Scholar
  47. 47.
    Brake T, Lambert PF. Estrogen contributes to the onset, persistence, and malignant progression of cervical cancer in a human papillomavirus-transgenic mouse model. Proc Natl Acad Sci U S A. 2005;102:2490–5.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Gruber CJ, Tschugguel W, Schneeberger C, Huber JC. Production and actions of estrogens. N Engl J Med. 2002;346:340–52.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Zhu BT, Han GZ, Shim JY, Wen Y, Jiang XR. Quantitative structure-activity relationship of various endogenous estrogen metabolites for human estrogen receptor alpha and beta subtypes: insights into the structural determinants favoring a differential subtype binding. Endocrinology. 2006;147:4132–50.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Raftogianis R, Creveling C, Weinshilboum R, Weisz J. Estrogen metabolism by conjugation. J Natl Cancer Inst Monogr. 2000;27:113–24.CrossRefGoogle Scholar
  51. 51.
    Kwa M, Plottel CS, Blaser JM, Adams S. The intestinal microbiome and estrogen receptor–positive female breast cancer. J Natl Cancer Inst. 2016;108:djw029.PubMedCentralGoogle Scholar
  52. 52.
    Ebner T, Remmel RP, Burchell B. Human bilirubin UDP-glucuronosyl- transferase catalyzes the glucuronidation of ethinylestradiol. Mol Pharmacol. 1993;43:649–54.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Bongiovanni AM, Cohn RM. Clinical aspects of steroid conjugation. In: Bernstein S, Solomon S, editors. Chemical and biological aspects of steroid conjugation, chap. 9. New York: Springer; 1970.CrossRefGoogle Scholar
  54. 54.
    Sandberg AA, Slaunwhite WR Jr. Studies on phenolic steroids in human subjects. II. The metabolic fate and hepato-biliary-enteric circulation of C14-estrone and C14-estradiol in women. J Clin Invest. 1957;36:1266–78.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Adlercreutz H, Martin F. Biliary excretion and intestinal metabolism of progesterone and estrogens in man. J Steroid Biochem. 1980;13:231–44.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Adlercreutz H, Jarvenpaa P. Assay of estrogens in human feces. J Steroid Biochem. 1982;17:639–45.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Cole CB, Fuller R, Mallet AK, Rowland IR. The influence of the host on expression of intestinal microbial enzyme activities involved in metabolism of foreign compounds. J Appl Bacteriol. 1985;59:549–53.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Dabek M, McCrae SI, Stevens VJ, Duncan SH, Louis P. Distribution of beta-glucosidase and beta-glucuronidase activity and of beta-glucuronidase gene gus in human colonic bacteria. FEMS Microbiol Ecol. 2008;66:487–95.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Gadelle D, Raibaud P, Sacquet E. beta-Glucuronidase activities of intestinal bacteria determined both in vitro and in vivo in gnotobiotic rats. Appl Environ Microbiol. 1985;49:682–5.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Gloux K, Berteau O, El Oumami H, Beguet F, Leclerc M, Dore J. A metagenomic beta-glucuronidase uncovers a core adaptive function of the human intestinal microbiome. Proc Natl Acad Sci U S A. 2011;108:4539–46.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    McBain AJ, Macfarlane GT. Ecological and physiological studies on large intestinal bacteria in relation to production of hydrolytic and reductive enzymes involved in formation of genotoxic metabolites. J Med Microbiol. 1998;47:407–16.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Martin F, Peltonen J, Laatikainen T, Pulkkinen M, Adlercreutz H. Excretion of progesterone metabolites and estriol in faeces from pregnant women during ampicillin administration. J Steroid Biochem. 1975;6:1339–46.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Adlercreutz H, Martin F, Lindström B. Gas chromatographic and mass spectrometric studies on oestrogens in bile—2. Men and non-pregnant women. J Steroid Biochem. 1978;9:1197–205.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Adlercreutz H, Martin F, Järvenpää P, Fotsis T. Steroid absorption and enterohepatic recycling. Contraception. 1979;20:201–23.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Eriksson H, Gustafsson JA, Sjovall J. Steroids in germfree and conventional rats. Free steroids in faeces from conventional rats. Eur J Biochem. 1969;9:286–90.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Shimizu K, Muranaka Y, Fujimura R, Ishida H, Tazume S, Shimamura T. Normalization of reproductive function in germfree mice following bacterial contamination. Exp Anim. 1998;47:151–8.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Falk RT, Brinton LA, Dorgan JF, Fuhrman BJ, Veenstra TD, Xu X, et al. Relationship of serum estrogens and estrogen metabolites to postmenopausal breast cancer risk: a nested case-control study. Breast Cancer Res. 2013;15:R34.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Flores R, Shi J, Fuhrman B, Xu X, Veenstra TD, Gail MH, et al. Fecal microbial determinants of fecal and systemic estrogens and estrogen metabolites: a cross-sectional study. J Transl Med. 2012;10:253.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Sampson JN, Falk RT, Schairer C, Moore SC, Fuhrman BJ, Dallal CM, et al. Association of estrogen metabolism with breast cancer risk in different cohorts of postmenopausal women. Cancer Res. 2017;77:918–25.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Fuhrman BJ, Schairer C, Gail MH, Boyd-Morin J, Xu X, Sue LY, et al. Estrogen metabolism and risk of breast cancer in postmenopausal women. J Natl Cancer Inst. 2012;104:326–39.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Sommer F, Backhed F. The gut microbiota − masters of host development and physiology. Nat Rev Microbiol. 2013;11:227–38.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Radogna F, Diederich M, Ghibelli L. Melatonin: a pleiotropic molecule regulating inflammation. Biochem Pharmacol. 2010;80:1844–52.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Bubenik GA, Brown GM, Grota LJ. Immunohistological localization of melatonin in the rat digestive system. Experientia. 1977;33:662–3.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Talib WH. Melatonin and cancer hallmarks. Molecules. 2018;23:E518.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Viswanathan A, Hankinson SE, Schernhammer ES. Night shift work and the risk of endometrial cancer. Cancer Res. 2007;67:10618–22.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Viswanathan AN, Schernhammer ES. Circulating melatonin and the risk of breast and endometrial cancer in women. Cancer Lett. 2009;281:1–7.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Blask DE, Hill SM. Effects of melatonin on cancer: studies on MCF-7 human breast cancer cells in culture. J Neural Transm. 1986;21:433–49.Google Scholar
  78. 78.
    Hill SM, Blask DE. Effects of the pineal hormone melatonin on the proliferation and morphological characteristics of human breast cancer cells (MCF-7) in culture. Cancer Res. 1988;48:6121–6.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Martínez-Campa C, González A, Mediavilla MD, Alonso-González C, Alvarez-García V, Sánchez-Barceló EJ, et al. Melatonin inhibits aromatase promoter expression by regulating cyclooxygenases expression and activity in breast cancer cells. Br J Cancer. 2009;101:1613–9.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Gonzalez A, Cos S, Martinez-Campa C, Alonso-Gonzalez C, Sanchez-Mateos S, Mediavilla MD, et al. Selective estrogen enzyme modulator actions of melatonin in human breast cancer cells. J Pineal Res. 2008;45:86–92.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Xu D, Lin TH, Yeh CR, Cheng MA, Chen LM, Chang C, et al. The wedelolactone derivative inhibits estrogen receptor-mediated breast, endometrial, and ovarian cancer cells growth. Biomed Res Int. 2014;2014:713263.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Antunes CM, Strolley PD, Rosenshein NB, Davies JL, Tonascia JA, Brown C, et al. Endometrial cancer and estrogen use. Report of a large case-control study. N Engl J Med. 1979;300:9–13.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Moreno V, Bosch FX, Muñoz N, Meijer CJ, Shah KV, Walboomers JM, et al. Effect of oral contraceptives on risk of cervical cancer in women with human papillomavirus infection: the IARC multicentric case-control study. Lancet. 2002;359:1085–92.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Muñoz N, Franceschi S, Bosetti C, Moreno V, Herrero R, Smith JS, et al. Role of parity and human papillomavirus in cervical cancer: the IARC multicentric case-control study. Lancet. 2002;359:1093–101.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Arbeit JM, Howley PM, Hanahan D. Chronic estrogen-induced cervical and vaginal squamous carcinogenesis in human papillomavirus type 16 transgenic mice. Proc Natl Acad Sci U S A. 1996;93:2930–5.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Park JS, Rhyu JW, Kim CJ, Kim HS, Lee SY, Kwon YI, et al. Neoplastic change of squamo-columnar junction in uterine cervix and vaginal epithelium by exogenous estrogen in hpv-18 URR E6/E7 transgenic mice. Gynecol Oncol. 2003;89:360–8.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Lukanova A, Kaaks R. Endogenous hormones and ovarian cancer: epidemiology and current hypotheses. Cancer Epidemiol Biomark Prev. 2005;14:98–107.Google Scholar
  88. 88.
    Allen NE, Key TJ, Dossus L, Rinaldi S, Cust A, Lukanova A, et al. Endogenous sex hormones and endometrial cancer risk in women in the European Prospective Investigation into Cancer and Nutrition (EPIC). Endocr Relat Cancer. 2008;15:485–97.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Gunter MJ, Hoover DR, Yu H, Wassertheil-Smoller S, Manson JE, Li J, et al. A prospective evaluation of insulin and insulin-like growth factor I as risk factors for endometrial cancer. Cancer Epidemiol Biomark Prev. 2008;17:921–9.CrossRefGoogle Scholar
  90. 90.
    Charalampakis V, Tahrani AA, Helmy A, Gupta JK, Singhal R. Polycystic ovary syndrome and endometrial hyperplasia: an overview of the role of bariatric surgery in female fertility. Eur J Obstet Gynecol Reprod Biol. 2016;207:220–6.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Purdie DM, Green AC. Epidemiology of endometrial cancer. Best Pract Res Clin Obstet Gynaecol. 2001;15:341–54.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Carlson MJ, Thiel KW, Leslie KK. Past, present, and future of hormonal therapy in recurrent endometrial cancer. Int J Womens Health. 2014;6:429–35.PubMedPubMedCentralGoogle Scholar
  93. 93.
    Siiteri PK. Adipose-tissue as a source of hormones. Am J Clin Nutr. 1987;45:277–82.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Upala S, Sanguankeo A. Bariatric surgery and risk of postoperative endometrial cancer: a systematic review and meta-analysis. Surg Obes Relat Dis. 2015;11:949–55.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Kaska L, Sledzinski T, Chomiczewska A, Dettlaff-Pokora A, Swierczynski J. Improved glucose metabolism following bariatric surgery is associated with increased circulating bile acid concentrations and remodeling of the gut microbiome. World J Gastroenterol. 2016;22:8698–719.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Gouda J, Prusty RK. Overweight and obesity among women by economic stratum in urban India. J Health Popul Nutr. 2014;32:79–88.PubMedPubMedCentralGoogle Scholar
  97. 97.
    Yajnik CS. Confessions of a thin-fat Indian. Eur J Clin Nutr. 2018;72:469–73.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Helzlsouer KJ, Alberg AJ, Gordon GB, Longcope C, Bush TL, Hoffman SC, et al. Serum gonadotropins and steroid hormones and the development of ovarian cancer. JAMA. 1995;274:1926–30.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Lindgren PR, Cajander S, Backstrom T, Gustafsson JA, Makela S, Olofsson JI. Estrogen and progesterone receptors in ovarian epithelial tumors. Mol Cell Endocrinol. 2004;221:97–104.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Lau KM, Mok SC, Ho SM. Expression of human estrogen receptor-a and -b, progesterone receptor, and androgen receptor mRNA in normal and malignant ovarian epithelial cells. Proc Natl Acad Sci U S A. 1999;96:5722–7.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Bardin A, Boulle N, Lazennec G, Vignon F, Pujol P. Loss of ERb expression as a common step in estrogen-dependent tumor progression. Endocr Relat Cancer. 2004;11:537–51.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Lazennec G. Estrogen receptor b, a possible tumor suppressor involved in ovarian carcinogenesis. Cancer Lett. 2006;23:151–7.CrossRefGoogle Scholar
  103. 103.
    Chu S, Nishi Y, Yanase T, Nawata H, Fuller PJ. Transrepression of estrogen receptor b signaling by nuclear factor-kb in ovarian granulosa cells. Mol Endocrinol. 2004;18:1919–28.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Avilés-Jiménez F, Guoqin Y, Torres-Poveda K, Madrid-Marina V, Torres J. On the search to elucidate the role of microbiota in the genesis of cancer: the cases of gastrointestinal and cervical cancer. Arch Med Res. 2017;48:754–65.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Boskey ER, Cone RA, Whaley KJ, Moench TR. Origins of vaginal acidity: high D/L lactate ratio is consistent with bacteria being the primary source. Hum Reprod. 2001;16:1809–13.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Aroutcheva A, Gariti D, Simon M, Shott S, Faro J, Simoes JA, et al. Defense factors of vaginal lactobacilli. Am J Obstet Gynecol. 2001;185:375–9.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Ocana VS, Pesce De Ruiz Holgado AA, Nader-Macias ME. Characterization of a bacteriocin-like substance produced by a vaginal Lactobacillus salivarius strain. Appl Environ Microbiol. 1999;65:5631–5.PubMedPubMedCentralGoogle Scholar
  108. 108.
    Reid G, Heinemann C, Velraeds M, van der Mei HC, Busscher HJ. Biosurfactants produced by Lactobacillus. Methods Enzymol. 1999;310:426–33.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Boris S, Barbés C. Role played by lactobacilli in controlling the population of vaginal pathogens. Microbes Infect. 2000;2:543–6.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    McMillan A, Dell M, Zellar MP, Cribby S, Martz S, Hong E, et al. Disruption of urogenital biofilms by lactobacilli. Colloids Surf B Biointerfaces. 2011;86:58–64.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Evans JM, Morris LS, Marchesi JR. The gut microbiome: the role of a virtual organ in the endocrinology of the host. J Endocrinol. 2013;218:R37–47.CrossRefGoogle Scholar
  112. 112.
    Freestone PP, Sandrini SM, Haigh RD, Lyte M. Microbial endocrinology: how stress influences susceptibility to infection. Trends Microbiol. 2008;16:55–64.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Amann RI, Ludwig W, Schleifer KH. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev. 1995;59:143–69.PubMedPubMedCentralGoogle Scholar
  114. 114.
    Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, et al. Diversity of the human intestinal microbial flora. Science. 2005;308:1635–8.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Ma ZS, Li L. Quantifying the human vaginal community state types (CSTs) with the species specificity index. PeerJ. 2017;5:e3366.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Lee JE, Lee S, Lee H, Song YM, Lee K, Han MJ, et al. Association of the vaginal microbiota with human papillomavirus infection in a Korean twin cohort. PLoS One. 2013;8:e63514.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Ravel J, Gajer P, Abdo Z, Schneider GM, Koenig SS, McCulle SL, et al. Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci U S A. 2011;108(Suppl 1):4680–7.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Gao W, Weng J, Gao Y, Chen X. Comparison of the vaginal microbiota diversity of women with and without human papillomavirus infection: a cross-sectional study. BMC Infect Dis. 2013;13:271.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Brotman RM, Shardell MD, Gajer P, Fadrosh D, Chang K, Silver MI, et al. Association between the vaginal microbiota, menopause status, and signs of vulvovaginal atrophy. Menopause. 2014;21:450–8.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Pabich WL, Fihn SD, Stamm WE, Scholes D, Boyko EJ, Gupta K. Prevalence and determinants of vaginal flora alterations in postmenopausal women. J Infect Dis. 2003;188:1054–8.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Hillier SL, Lau RJ. Vaginal microflora in postmenopausal women who have not received estrogen replacement therapy. Clin Infect Dis. 1997;25:S123.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Kenyon C, Colebunders R, Crucitti T. The global epidemiology of bacterial vaginosis: a systematic review. Am J Obstet Gynecol. 2013;209:505–23.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Srinivasan S, Hoffman NG, Morgan MT, Matsen FA, Fiedler TL, Hall RW, et al. Bacterial communities in women with bacterial vaginosis: high resolution phylogenetic analyses reveal relationships of microbiota to clinical criteria. PLoS One. 2012;7:e37818.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Ling Z, Kong J, Liu F, Zhu H, Chen X, Wang Y, et al. Molecular analysis of the diversity of vaginal microbiota associated with bacterial vaginosis. BMC Genomics. 2010;11:488.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Cox C, Watt AP, McKenna JP, Coyle PV. Mycoplasma hominis and Gardnerella vaginalis display a significant synergistic relationship in bacterial vaginosis. Eur J Clin Microbiol Infect Dis. 2016;35:481–7.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Atashili J, Poole C, Ndumbe PM, Adimora AA, Smith JS. Bacterial vaginosis and HIV acquisition: a meta-analysis of published studies. AIDS. 2008;22:1493–501.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Gallo MF, Macaluso M, Warner L, Fleenor ME, Hook EW, Brill I, et al. Bacterial vaginosis, gonorrhea, and chlamydial infection among women attending a sexually transmitted disease clinic: a longitudinal analysis of possible causal links. Ann Epidemiol. 2012;22:213–20.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Aghaizu A, Reid F, Kerry S, Hay PE, Mallinson H, Jensen JS, et al. Frequency and risk factors for incident and redetected Chlamydia trachomatis infection in sexually active, young, multi-ethnic women: a community based cohort study. Sex Transm Infect. 2014;90:524–8.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Gillet E, Meys JF, Verstraelen H, Bosire C, De Sutter P, Temmerman M, et al. Bacterial vaginosis is associated with uterine cervical human papillomavirus infection: a meta-analysis. BMC Infect Dis. 2011;11:10.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Nugent RP, Krohn MA, Hillier SL. Reliability of diagnosing bacterial vaginosis is improved by a standardized method of gram stain interpretation. J Clin Microbiol. 1991;29:297–301.PubMedPubMedCentralGoogle Scholar
  131. 131.
    Nasioudis D, Linhares IM, Ledger WJ, Witkin SS. Bacterial vaginosis: a critical analysis of current knowledge. BJOG. 2017;124:61–9.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Castellsague X, Munoz N. Chapter 3: Cofactors in human papillomavirus carcinogenesis—role of parity, oral contraceptives, and tobacco smoking. J Natl Cancer Inst Monogr. 2003;(31):20–8.Google Scholar
  133. 133.
    Winer RL, Hughes JP, Feng Q, Xi LF, Cherne S, O’Reilly S, et al. Early natural history of incident, type-specific human papillomavirus infections in newly sexually active young women. Cancer Epidemiol Biomark Prev. 2011;20:699–707.CrossRefGoogle Scholar
  134. 134.
    Castellsague X, Bosch FX, Munoz N. Environmental co-factors in HPV carcinogenesis. Virus Res. 2002;89:191–9.PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Guidry JT, Scott RS. The interaction between human papillomavirus and other viruses. Virus Res. 2017;231:139–47.PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Guo YL, You K, Qiao J, Zhao YM, Geng L. Bacterial vaginosis is conducive to the persistence of HPV infection. Int J STD AIDS. 2012;23:581–4.PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Behbakht K, Friedman J, Heimler I, Aroutcheva A, Simoes J, Faro S. Role of the vaginal microbiological ecosystem and cytokine profile in the promotion of cervical dysplasia: a case-control study. Infect Dis Obstet Gynecol. 2002;10:181–6.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Grce M, Husnjak K, Matovina M, Milutin N, Magdic L, Husnjak O, et al. Human papillomavirus, cytomegalovirus, and adeno-associated virus infections in pregnant and nonpregnant women with cervical intraepithelial neoplasia. J Clin Microbiol. 2004;42:1341–4.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Audirac-Chalifour A, Torres-Poveda K, Bahena-Román M, Téllez-Sosa J, Martínez-Barnetche J, Cortina-Ceballos B, et al. Cervical microbiome and cytokine profile at various stages of cervical cancer: a pilot study. PLoS One. 2016;11:e0153274.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Di Pietro M, Filardo S, Porpora MG, Recine N, Latino MA, Sessa R. HPV/Chlamydia trachomatis co-infection: metagenomic analysis of cervical microbiota in asymptomatic women. New Microbiol. 2018;41:34–41.PubMedPubMedCentralGoogle Scholar
  141. 141.
    Oh HY, Kim BS, Seo SS, Kong JS, Lee JK, Park SY, et al. The association of uterine cervical microbiota with an increased risk for cervical intraepithelial neoplasia in Korea. Clin Microbiol Infect. 2015;21:674.e1–9.CrossRefGoogle Scholar
  142. 142.
    Brotman RM, Shardell MD, Gajer P, Tracy JK, Zenilman JM, Ravel J, et al. Interplay between the temporal dynamics of the vaginal microbiota and human papillomavirus detection. J Infect Dis. 2014;210:1723–33.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Seo SS, Oh HY, Lee JK, Kong JS, Lee DO, Kim MK. Combined effect of diet and cervical microbiome on the risk of cervical intraepithelial neoplasia. Clin Nutr. 2016;35:1434–41.PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Lewis FM, Bernstein KT, Aral SO. Vaginal microbiome and its relationship to behavior, sexual health, and sexually transmitted diseases. Obstet Gynecol. 2017;129:643–54.PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Brooks JP, Buck GA, Chen G, Diao L, Edwards DJ, Fettweis JM, et al. Changes in vaginal community state types reflect major shifts in the microbiome. Microb Ecol Health Dis. 2017;28:1303265.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Mitra A, MacIntyre DA, Lee YS, Smith A, Marchesi JR, Lehne B, et al. Cervical intraepithelial neoplasia disease progression is associated with increased vaginal microbiome diversity. Sci Rep. 2015;5:16865.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Smith SB, Ravel J. The vaginal microbiota, host defence and reproductive physiology. J Physiol. 2017;595:451–63.PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Chase D, Goulder A, Zenhausern F, Monk B, Herbst-Kralovetz M. The vaginal and gastrointestinal microbiomes in gynecologic cancers: a review of applications in etiology, symptoms and treatment. Gynecol Oncol. 2015;138:190–200.PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Zhang C, Liu Y, Gao W, Pan Y, Gao Y, Shen J, et al. The direct and indirect association of cervical microbiota with the risk of cervical intraepithelial neoplasia. Cancer Med. 2018;7:2172.  https://doi.org/10.1002/cam4.1471.CrossRefPubMedPubMedCentralGoogle Scholar
  150. 150.
    Fernández-Benítez C, Mejuto-López P, Otero-Guerra L, Margolles-Martins MJ, Suárez-Leiva P, Vazquez F, Chlamydial Primary Care Group. Prevalence of genital Chlamydia trachomatis infection among young men and women in Spain. BMC Infect Dis. 2013;13:388.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Lewis D, Newton DC, Guy RJ, Ali H, Chen MY, Fairley CK, et al. The prevalence of Chlamydia trachomatis infection in Australia: a systematic review and meta-analysis. BMC Infect Dis. 2012;12:113.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Castellsague X, Pawlita M, Roura E, Margall N, Waterboer T, Bosch FX, et al. Prospective seroepidemiologic study on the role of human papillomavirus and other infections in cervical carcinogenesis: evidence from the EPIC cohort. Int J Cancer. 2014;135:440–52.PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Arnheim Dahlstrom L, Andersson K, Luostarinen T, Thoresen S, Ögmundsdottír H, Tryggvadottír L, et al. Prospective seroepidemiologic study of human papillomavirus and other risk factors in cervical cancer. Cancer Epidemiol Biomark Prev. 2011;20:2541–50.CrossRefGoogle Scholar
  154. 154.
    Bebear C, de Barbeyrac B. Genital Chlamydia trachomatis infections. Clin Microbiol Infect. 2009;15:4–10.PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Ohman H, Tiitinen A, Halttunen M, Lehtinen M, Paavonen J, Surcel HM, et al. Cytokine polymorphisms and severity of tubal damage in women with Chlamydia-associated infertility. J Infect Dis. 2009;199:1353–9.PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Muñoz N, Kato I, Bosch FX, Eluf-Neto J, De Sanjosé S, Ascunce N, et al. Risk factors for HPV DNA detection in middle-aged women. Sex Transm Dis. 1996;23:504–10.PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Seraceni S, De Seta F, Colli C, Del Savio R, Pesel G, Zanin V, et al. High prevalence of HPV multiple genotypes in women with persistent chlamydia trachomatis infection. Infect Agent Cancer. 2014;9:30.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Silva J, Cerqueira F, Ribeiro J, Sousa H, Osório T, Medeiros R. Is Chlamydia trachomatis related to human papillomavirus infection in young women of southern European population? A self-sampling study. Arch Gynecol Obstet. 2013;288:627–33.PubMedCrossRefPubMedCentralGoogle Scholar
  159. 159.
    Castle PE, Escoffery C, Schachter J, Rattray C, Schiffman M, Moncada J, et al. Chlamydia trachomatis, herpes simplex virus 2, and human T-cell lymphotrophic virus type 1 are not associated with grade of cervical neoplasia in Jamaican colposcopy patients. Sex Transm Dis. 2003;30:575–80.PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    Samoff E, Koumans EH, Markowitz LE, Sternberg M, Sawyer MK, Swan D, et al. Association of Chlamydia trachomatis with persistence of high-risk types of human papillomavirus in a cohort of female adolescents. Am J Epidemiol. 2005;162:668–75.PubMedCrossRefPubMedCentralGoogle Scholar
  161. 161.
    Vriend HJ, Bogaards JA, van Bergen JEAM, Brink AATP, van den Broek IVF, Hoebe CJPA, et al. Incidence and persistence of carcinogenic genital human papillomavirus infections in young women with or without Chlamydia trachomatis co-infection. Cancer Med. 2015;4:1589–98.PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Karim S, Souho T, Benlemlih M, Bennani B. Cervical cancer induction enhancement potential of Chlamydia trachomatis: a systematic review. Curr Microbiol. 2018;75:1667.  https://doi.org/10.1007/s00284-018-1439-7.CrossRefPubMedPubMedCentralGoogle Scholar
  163. 163.
    Koskela P, Anttila T, Bjørge T, Brunsvig A, Dillner J, Hakama M, et al. Chlamydia trachomatis infection as a risk factor for invasive cervical cancer. Int J Cancer. 2000;85:35–9.PubMedCrossRefPubMedCentralGoogle Scholar
  164. 164.
    Smith JS, Bosetti C, Muñoz N, Herrero R, Bosch FX, Eluf-Neto J. Chlamydia trachomatis and invasive cervical cancer: a pooled analysis of the IARC multicentric case-control study. Int J Cancer. 2004;111:431–9.PubMedCrossRefPubMedCentralGoogle Scholar
  165. 165.
    Zhu H, Shen Z, Luo H, Zhang W, Zhu X. Chlamydia trachomatis infection-associated risk of cervical cancer: a meta-analysis. Medicine (Baltimore). 2016;95:e3077.CrossRefGoogle Scholar
  166. 166.
    Massad LS, Xie X, Burk R, Keller MJ, Minkoff H, DʼSouza G, et al. Long-term cumulative detection of human papillomavirus among HIV seropositive women. AIDS. 2014;28:2601–8.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Rowhani-Rahbar A, Hawes SE, Sow PS, Toure P, Feng Q, Dem A, et al. The impact of HIV status and type on the clearance of human papillomavirus infection among Senegalese women. J Infect Dis. 2007;196:887–94.PubMedCrossRefPubMedCentralGoogle Scholar
  168. 168.
    Massad LS, Xie X, D’Souza G, Darragh TM, Minkoff H, Wright R, et al. Incidence of cervical precancers among HIV seropositive women. Am J Obstet Gynecol. 2015;212:606.e1–8.CrossRefGoogle Scholar
  169. 169.
    Clifford GM, Franceschi S, Keiser O, Schöni-Affolter F, Lise M, Dehler S, et al. Immunodeficiency and the risk of cervical intraepithelial neoplasia 2/3 and cervical cancer: a nested case-control study in the Swiss HIV cohort study. Int J Cancer. 2016;138:1732–40.PubMedCrossRefPubMedCentralGoogle Scholar
  170. 170.
    Abraham AG, Strickler HD, D’Souza G. Invasive cervical cancer risk among HIV infected women is a function of CD4 count and screening. J Acquir Immune Defic Syndr. 2013;63:e163.PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Grulich AE, van Leeuwen MT, Falster MO, Vajdic CM. Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: a meta-analysis. Lancet. 2007;370:59–67.PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Reusser NM, Downing C, Guidry J, Tyring SK. HPV carcinomas in immunocompromised patients. J Clin Med. 2015;4:260–81.PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Nazli A, Chan O, Dobson-Belaire WN, Ouellet M, Tremblay MJ, Gray-Owen SD, et al. Exposure to HIV-1 directly impairs mucosal epithelial barrier integrity allowing microbial translocation. PLoS Pathog. 2010;6:e1000852.PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Tugizov SM, Herrera R, Chin-Hong P, Veluppillai P, Greenspan D, Michael Berry J, et al. HIV-associated disruption of mucosal epithelium facilitates paracellular penetration by human papillomavirus. Virology. 2013;446:378–88.PubMedCrossRefPubMedCentralGoogle Scholar
  175. 175.
    Palefsky J. Human papillomavirus-related disease in people with HIV. Curr Opin HIV AIDS. 2009;4:52–6.PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Blitz S, Baxter J, Raboud J, Walmsley S, Rachlis A, Smaill F, et al. Evaluation of HIV and highly active antiretroviral therapy on the natural history of human papillomavirus infection and cervical cytopathologic findings in HIV-positive and high-risk HIV-negative women. J Infect Dis. 2013;208:454–62.PubMedCrossRefPubMedCentralGoogle Scholar
  177. 177.
    Konopnicki D, Manigart Y, Gilles C, Barlow P, de Marchin J, Feoli F, et al. Sustained viral suppression and higher CD4+ T-cell count reduces the risk of persistent cervical high-risk human papillomavirus infection in HIV-positive women. J Infect Dis. 2013;207:1723–9.PubMedCrossRefPubMedCentralGoogle Scholar
  178. 178.
    Frisch M, Biggar RJ, Goedert JJ. Human papillomavirus-associated cancers in patients with human immunodeficiency virus infection and acquired immunodeficiency syndrome. J Natl Cancer Inst. 2000;92:1500–10.PubMedCrossRefPubMedCentralGoogle Scholar
  179. 179.
    Houlihan CF, Larke NL, Watson-Jones D, Smith-McCune KK, Shiboski S, Gravitt PE, et al. Human papillomavirus infection and increased risk of HIV acquisition. A systematic review and meta-analysis. AIDS. 2012;26:2211–22.PubMedCrossRefPubMedCentralGoogle Scholar
  180. 180.
    Averbach SH, Gravitt PE, Nowak RG, Celentano DD, Dunbar MS, Morrison CS, et al. The association between cervical human papillomavirus infection and HIV acquisition among women in Zimbabwe. AIDS. 2010;24:1035–42.PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Smith-McCune KK, Shiboski S, Chirenje MZ, Magure T, Tuveson J, Ma Y, et al. Type-specific cervico-vaginal human papillomavirus infection increases risk of HIV acquisition independent of other sexually transmitted infections. PLoS One. 2010;5:e10094.PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Liu M, Kalbasi A, Beatty GL. Functio laesa: cancer inflammation and therapeutic resistance. J Oncol Pract. 2017;13:173–80.PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Yang TK, Chung CJ, Chung SD, Muo CH, Chang CH, Huang CY. Risk of endometrial cancer in women with pelvic inflammatory disease: a nationwide population-based retrospective cohort study. Medicine (Baltimore). 2015;94:e1278.CrossRefGoogle Scholar
  184. 184.
    Ness RB, Kip KE, Hillier SL, Soper DE, Stamm CA, Sweet RL, et al. A cluster analysis of bacterial vaginosis–associated microflora and pelvic inflammatory disease. Am J Epidemiol. 2005;162:585–90.PubMedCrossRefPubMedCentralGoogle Scholar
  185. 185.
    Sharma H, Tal R, Clark NA, Segars JH. Microbiota and pelvic inflammatory disease. Semin Reprod Med. 2014;32:43–9.PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Mitchell CM, Haick A, Nkwopara E, Garcia R, Rendi M, Agnew K, et al. Colonization of the upper genital tract by vaginal bacterial species in nonpregnant women. Am J Obstet Gynecol. 2015;212:611.e1–9.CrossRefGoogle Scholar
  187. 187.
    Walther-Antonio MR, Chen J, Multinu F, Hokenstad A, Distad TJ, Cheek EH, et al. Potential contribution of the uterine microbiome in the development of endometrial cancer. Genome Med. 2016;8:122.PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    Brewster WR, Ko EM, Keku TO. An evaluation of the microbiota of the upper genital tract of women with benign changes and epithelial ovarian cancer. J Clin Oncol. 2016;34(15_suppl):5568.CrossRefGoogle Scholar
  189. 189.
    Poole EM, Lee IM, Ridker PM, Buring JE, Hankinson SE, Tworoger SS. A prospective study of circulating C-reactive protein, interleukin-6, and tumor necrosis factor alpha receptor 2 levels and risk of ovarian cancer. Am J Epidemiol. 2013;178:1256–64.PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Krohn MA, Hillier SL, Nugent RP, Cotch MF, Carey JC, Gibbs RS, et al. The genital flora of women with intraamniotic infection. Vaginal Infection and Prematurity Study Group. J Infect Dis. 1995;171:1475–80.PubMedCrossRefPubMedCentralGoogle Scholar
  191. 191.
    Silver HM, Sperling RS, St Clair PJ, Gibbs RS. Evidence relating bacterial vaginosis to intraamniotic infection. Am J Obstet Gynecol. 1989;161:808–12.PubMedCrossRefPubMedCentralGoogle Scholar
  192. 192.
    Hillier SL, Krohn MA, Cassen E, Easterling TR, Rabe LK, Eschenbach DA. The role of bacterial vaginosis and vaginal bacteria in amniotic fluid infection in women in preterm labor with intact fetal membranes. Clin Infect Dis. 1995;20:S276–8.PubMedCrossRefPubMedCentralGoogle Scholar
  193. 193.
    Hillier SL, Kiviat NB, Hawes SE, Hasselquist MB, Hanssen PW, Eschenbach DA, et al. Role of bacterial vaginosis-associated microorganisms in endometritis. Am J Obstet Gynecol. 1996;175:435–41.PubMedCrossRefPubMedCentralGoogle Scholar
  194. 194.
    Tone AA, Salvador S, Finlayson SJ, Tinker AV, Kwon JS, Lee CH, et al. The role of the fallopian tube in ovarian cancer. Clin Adv Hematol Oncol. 2012;10:296–306.PubMedPubMedCentralGoogle Scholar
  195. 195.
    Massad LS, Ahdieh L, Benning L, Minkoff H, Greenblatt RM, Watts H, et al. Evolution of cervical abnormalities among women with HIV-1: evidence from surveillance cytology in the women’s interagency HIV study. J Acquir Immune Defic Syndr. 2001;27:432–42.PubMedCrossRefPubMedCentralGoogle Scholar
  196. 196.
    Silva J, Cerqueira F, Medeiros R. Chlamydia trachomatis infection: implications for HPV status and cervical cancer. Arch Gynecol Obstet. 2014;289:715–23.PubMedCrossRefPubMedCentralGoogle Scholar
  197. 197.
    Gaya P, Medina M, Sánchez-Jiménez A, Landete JM. Phytoestrogen metabolism by adult human gut microbiota. Molecules. 2016;21:E1034.PubMedCrossRefPubMedCentralGoogle Scholar
  198. 198.
    Rietjens IMCM, Louisse J, Beekmann K. The potential health effects of dietary phytoestrogens. Br J Pharmacol. 2017;174:1263–80.PubMedCrossRefPubMedCentralGoogle Scholar
  199. 199.
    Landete JM, Arqués JL, Medina M, Gaya P, de las Rivas B, Muñoz R. Bioactivation of phytoestrogens: intestinal bacteria and health. Crit Rev Food Sci Nutr. 2016;56:1826–43.PubMedCrossRefPubMedCentralGoogle Scholar
  200. 200.
    Selma MV, Beltrán D, Luna MC, Romo-Vaquero M, García-Villalba R, Mira A, et al. Isolation of human intestinal bacteria capable of producing the bioactive metabolite isourolithin A from ellagic acid. Front Microbiol. 2017;8:1521.PubMedPubMedCentralCrossRefGoogle Scholar
  201. 201.
    Velicer CM, Heckbert SR, Lampe JW, Potter JD, Robertson CA, Taplin SH. Antibiotic use in relation to the risk of breast cancer. JAMA. 2004;291:827–35.PubMedCrossRefPubMedCentralGoogle Scholar
  202. 202.
    Javurek AB, Spollen WG, Johnson SA, Bivens NJ, Bromert KH, Givan SA, et al. Effects of exposure to bisphenol A and ethinyl estradiol on the gut microbiota of parents and their offspring in a rodent model. Gut Microbes. 2016;7:471–85.PubMedPubMedCentralCrossRefGoogle Scholar
  203. 203.
    Clavel T, Mapesa JO. Phenolics in human nutrition: importance of the intestinal microbiome for isoflavone and lignan bioavailability. In: Ramawat K, Mérillon JM, editors. Natural products. Berlin: Springer; 2013.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • R. S. Jayshree
    • 1
  • Rekha V. Kumar
    • 2
  1. 1.Center for Molecular OncologyKidwai Cancer InstituteBangaloreIndia
  2. 2.Department of OncopathologyKidwai Cancer InstituteBangaloreIndia

Personalised recommendations