Advertisement

Breast Cancer Risk Assessment and Genetic Testing

  • Nidhi Arora
  • Sumita Mehta
Chapter

Abstract

Breast cancer is the most common cancer diagnosed in women all over the world. With the improvement in the screening protocols and the availability of advanced treatment strategies, there is an increase in the prevalence of breast cancer. Risk assessment in women with breast cancer is important to categorize into average risk and high risk. This is done so as to offer more frequent and advanced screening methods to the high-risk population while simultaneously carrying out the basic screening to the average-risk group. In this chapter we have described the various risk factors acting individually or in combination contributing to the pathogenesis of breast cancer. We have also described the need for genetic testing in the high-risk group and their subsequent counselling.

Keywords

Breast carcinoma Risk factors Risk assessment Family history BRCA1 BRCA2 Genetic testing 

References

  1. 1.
    Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108.CrossRefGoogle Scholar
  2. 2.
    Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, et al. GLOBOCAN 2012 v1.1, Cancer Incidence and Mortality Worldwide: IARC Cancer Base No. 11.Google Scholar
  3. 3.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67:7–30.CrossRefPubMedGoogle Scholar
  4. 4.
    Howlader N, Noone AM, Krapcho M, Miller D, Bishop K, Altekruse SF, et al., editors. SEER cancer statistics review, 1975–2013 (Level II–3). Bethesda, MD: National Cancer Institute.Google Scholar
  5. 5.
    Ries LAG, Melbert D, Krapcho M, et al. SEER cancer statistics review, 1975–2004. Bethesda, MD: National Cancer Institute. http://seer.cancer.gov/csr/1975_2004/, based on November 2006 SEER data submission, posted to the SEER web site, 2007.
  6. 6.
    Krieger N. Social class and the black/white crossover in the age-specific incidence of breast cancer: a study linking census-derived data to population-based registry records. Am J Epidemiol. 1990;131(5):804–14.PubMedCrossRefGoogle Scholar
  7. 7.
    Boice JD Jr. Radiation and breast carcinogenesis. Med Pediatr Oncol. 2001;36(5):508–13.PubMedCrossRefGoogle Scholar
  8. 8.
    Modan B, Chetrit A, Alfandary E, Katz L. Increased risk of breast cancer after low-dose irradiation. Lancet. 1989;1(8639):629–31.PubMedCrossRefGoogle Scholar
  9. 9.
    Collaborative Group on Hormonal Factors in Breast Cancer. Familial breast cancer: collaborative reanalysis of individual data from 52 epidemiological studies including 58,209 women with breast cancer and 101,986 women without the disease. Lancet. 2001;358(9291):1389–99.CrossRefGoogle Scholar
  10. 10.
    Hennekens CH, Buring JE, Manson JE, Stampfer M, Rosner B, Cook NR, et al. Lack of effect of long-term supplementation with beta carotene on the incidence of malignant neoplasms and cardiovascular disease. N Engl J Med. 1996;334:1145–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Claus EB, Risch N, Thompson WD. Genetic analysis of breast cancer in the cancer and steroid hormone study. Am J Hum Genet. 1991;48(2):232–42.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Lalloo F, Varley J, Ellis D, Moran A, O’Dair L, Pharoah P, et al. Prediction of pathogenic mutations in patients with early-onset breast cancer by family history. Lancet. 2003;361(9363):1101–2.PubMedCrossRefGoogle Scholar
  13. 13.
    Ford D, Easton DF, Bishop DT, Narod SA, Goldgar DE. Risks of cancer in BRCA1-mutation carriers. Breast Cancer Linkage Consortium. Lancet. 1994;343:692–5.PubMedCrossRefGoogle Scholar
  14. 14.
    Easton DF, Ford D, Bishop DT. Breast and ovarian cancer incidence in BRCA1-mutation carriers. Breast Cancer Linkage Consortium. Am J Hum Genet. 1995;56:265–71.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Robson M, Gilewski T, Haas B, Levin D, Borgen P, Rajan P, et al. BRCA-associated breast cancer in young women. J Clin Oncol. 1998;16:1642–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Breast Cancer Linkage Consortium. Cancer risks in BRCA2 mutation carriers. J Natl Cancer Inst. 1999;91:1310–6.CrossRefGoogle Scholar
  17. 17.
    Van den Broek AJ, Schmidt MK, van’t Veer LJ, Tollenaar RA, van Leeuwen FE. Worse breast cancer prognosis of BRCA1/BRCA2 mutation carriers: what’s the evidence? A systematic review with meta-analysis. PLoS One. 2015;10:e0120189.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Mavaddat N, Peock S, Frost D, Ellis S, Platte R, Fineberg E, et al. Cancer risks for BRCA1 and BRCA2 mutation carriers: results from prospective analysis of EMBRACE. J Natl Cancer Inst. 2013;105:812–22.PubMedCrossRefGoogle Scholar
  19. 19.
    Kote-Jarai Z, Leongamornlert D, Saunders E, Tymrakiewicz M, Castro E, Mahmud N, et al. BRCA2 is a moderate penetrance gene contributing to young-onset prostate cancer: implications for genetic testing in prostate cancer patients. Br J Cancer. 2011;105:1230–4.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Iqbal J, Ragone A, Lubinski J, Lynch HT, Moller P, Ghadirian P, et al. The incidence of pancreatic cancer in BRCA1 and BRCA2 mutation carriers. Br J Cancer. 2012;107:2005–9.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Leongamornlert D, Mahmud N, Tymrakiewicz M, Saunders E, Dadaev T, Castro E, et al. BRCA1 mutations increase prostate cancer risk. Br J Cancer. 2012;106:1697–701.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Graeser MK, Engel C, Rhiem K, Gadzicki D, Bick U, Kast K, et al. Contralateral breast cancer risk in BRCA1 and BRCA2 mutation carriers. J Clin Oncol. 2009;27:5887–92.PubMedCrossRefGoogle Scholar
  23. 23.
    Van Asperen CJ, Brohet RM, Meijers-Heijboer EJ, Hoogerbrugge N, Verhoef S, Vasen HF, et al. Cancer risks in BRCA2 families: estimates for sites other than breast and ovary. J Med Genet. 2005;42:711–9.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Abbott DW, Thompson ME, Robinson-Benion C, Tomlinson G, Jensen RA, Holt JT. BRCA1 expression restores radiation resistance in BRCA1-defective cancer cells through enhancement of transcription-coupled DNA repair. J Biol Chem. 1999;274(26):18808–12.PubMedCrossRefGoogle Scholar
  25. 25.
    Anglian Breast Cancer Study Group. Prevalence and penetrance of BRCA1 and BRCA2 mutations in a population-based series of breast cancer cases. Br J Cancer. 2000;83:1301–8.PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Whittemore AS, Gong G, John EM, McGuire V, Li FP, Ostrow KL, et al. Prevalence of BRCA1 mutation carriers among U.S. non-Hispanic Whites. Cancer Epidemiol Biomark Prev. 2004b;13:2078–83.Google Scholar
  27. 27.
    Ruijs MW, Verhoef S, Rookus MA, Pruntel R, van der Hout AH, Hogervorst FB, et al. TP53 germline mutation testing in 180 families suspected of Li-Fraumeni syndrome: mutation detection rate and relative frequency of cancers in different familial phenotypes. J Med Genet. 2010;47:421–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Hobert JA, Eng C. PTEN hamartoma tumor syndrome: an overview. Genet Med. 2009;11:687–94.PubMedCrossRefGoogle Scholar
  29. 29.
    Brooks-Wilson AR, Kaurah P, Suriano G, Leach S, Senz J, Grehan N, et al. Germline E-cadherin mutations in hereditary diffuse gastric cancer: assessment of 42 new families and review of genetic screening criteria. J Med Genet. 2004;41:508–17.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Weischer M, Bojesen SE, Tybjaerg-Hansen A, Axelsson CK, Nordestgaard BG. Increased risk of breast cancer associated with CHEK2*1100delC. J Clin Oncol. 2007;25:57–63.PubMedCrossRefGoogle Scholar
  31. 31.
    Renwick A, Thompson D, Seal S, Kelly P, Chagtai T, Ahmed M, et al. ATM mutations that cause ataxia-telangiectasia are breast cancer susceptibility alleles. Nat Genet. 2006;38:873–5.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Antoniou AC, Casadei S, Heikkinen T, Barrowdale D, Pylkäs K, Roberts J, et al. Breast-cancer risk in families with mutations in PALB2. N Engl J Med. 2014;371:497–506.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Lauper JM, Krause A, Vaughan TL, Monnat RJ Jr. Spectrum and risk of neoplasia in Werner syndrome: a systematic review. PLoS One. 2013;8:e59709.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Kelsey JL, Gammon MD, John EM. Reproductive factors and breast cancer. Epidemiol Rev. 1993;15(1):36–47.PubMedCrossRefGoogle Scholar
  35. 35.
    Collaborative Group. Breast cancer and breastfeeding: collaborative reanalysis of individual data from 47 epidemiological studies in 30 countries, including 50302 women with breast cancer and 96973 women without the disease. Lancet. 2002;360(9328):187–95.CrossRefGoogle Scholar
  36. 36.
    Trichopoulos D, Hsieh CC, MacMahon B, Lin TM, Lowe CR, Mirra AP, et al. Age at any birth and breast cancer risk. Int J Cancer. 1983;31(6):701–4.PubMedCrossRefGoogle Scholar
  37. 37.
    Russo J, Russo IH. Toward a physiological approach to breast cancer prevention. Cancer Epidemiol Biomark Prev. 1994;3(4):353–64.Google Scholar
  38. 38.
    Collaborative Group on Hormonal Factors in Breast Cancer. Breast cancer and hormonal contraceptives: further results. Contraception. 1996;54(3 Suppl):1S–106S.Google Scholar
  39. 39.
    Mørch LS, Skovlund CW, Hannaford PC, Iversen L, Fielding S, Lidegaard Ø. Contemporary hormonal contraception and the risk of breast cancer. N Engl J Med. 2017;377:2228–39.PubMedCrossRefGoogle Scholar
  40. 40.
    Moorman PG, Havrilesky LJ, Gierisch JM, Coeytaux RR, Lowery WJ, Peragallo Urrutia R, et al. Oral contraceptives and risk of ovarian cancer and breast cancer among high-risk women: a systematic review and meta-analysis. J Clin Oncol. 2013;31(33):4188–98.PubMedCrossRefGoogle Scholar
  41. 41.
    Chlebowski RT, Hendrix SL, Langer RD, Stefanick ML, Gass M, Lane D, et al. Influence of estrogen plus progestin on breast cancer and mammography in healthy postmenopausal women: the Women’s Health Initiative Randomized Trial. JAMA. 2003;289:3243–53.PubMedCrossRefGoogle Scholar
  42. 42.
    Smith CL, Santen RJ, Komm B, Mirkin S. Breast-related effects of selective estrogen receptor modulators and tissue-selective estrogen complexes. Breast Cancer Res. 2014;16(3):212.  https://doi.org/10.1186/bcr3677.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Dyrstad SW, Yan Y, Fowler AM, Colditz GA. Breast cancer risk associated with benign breast disease: systematic review and meta-analysis. Breast Cancer Res Treat. 2015;149:569–75.PubMedCrossRefGoogle Scholar
  44. 44.
    McDivitt RW, Stevens JA, Lee NC, Wingo PA, Rubin GL, Gersell D. Histologic types of benign breast disease and the risk for breast cancer. The Cancer and Steroid Hormone Study Group. Cancer. 1992;69(6):1408–14.PubMedCrossRefGoogle Scholar
  45. 45.
    London SJ, Connolly JL, Schnitt SJ, Colditz GA. A prospective study of benign breast disease and the risk of breast cancer. JAMA. 1992;267(7):941–4.PubMedCrossRefGoogle Scholar
  46. 46.
    Marshall LM, Hunter DJ, Connolly JL, et al. Risk of breast cancer associated with atypical hyperplasia of lobular and ductal types. Cancer Epidemiol Biomark Prev. 1997;6(5):297–301.Google Scholar
  47. 47.
    Boyd NF. Mammography density and risk of breast cancer. Am Soc Clin Oncol Educ Book. 2013.  https://doi.org/10.1200/EdBook_AM.2013.33.e57.CrossRefGoogle Scholar
  48. 48.
    Boyd NF, Rommens JM, Vogt K, Lee V, Hopper JL, Yaffe MJ, et al. Mammographic breast density as an intermediate phenotype for breast cancer. Lancet Oncol. 2005;6(10):798–808.PubMedCrossRefGoogle Scholar
  49. 49.
    Ursin G, Ma H, Wu AH, Bernstein L, Salane M, Parisky YR, et al. Mammographic density and breast cancer in three ethnic groups. Cancer Epidemiol Biomark Prev. 2003;12(4):332–8.Google Scholar
  50. 50.
    Van den Brandt PA. Pooled analysis of prospective cohort studies on height, weight, and breast cancer risk. Am J Epidemiol. 2000;152(6):514–27.PubMedCrossRefGoogle Scholar
  51. 51.
    Friedenreich CM, Orenstein MR. Physical activity and cancer prevention: etiologic evidence and biological mechanisms. J Nutr. 2002;132(11 Suppl):3456S–64S.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Collaborative Group. Alcohol, tobacco and breast cancer–collaborative reanalysis of individual data from 53 epidemiological studies, including 58,515 women with breast cancer and 95,067 women without the disease. Br J Cancer. 2002;87(11):1234–45.CrossRefGoogle Scholar
  53. 53.
    Boffetta P, Hashibe M. Alcohol and cancer. Lancet Oncol. 2006;7:149–56.PubMedCrossRefGoogle Scholar
  54. 54.
    Gaudet MM, Gapstur SM, Sun J, Diver WR, Hannan LM, Thun MJ. Active smoking and breast cancer risk: original cohort data and meta-analysis. J Natl Cancer Inst. 2013;105:515–25.PubMedCrossRefGoogle Scholar
  55. 55.
    Catsburg C, Miller AB, Rohan TE. Active cigarette smoking and risk of breast cancer. Int J Cancer. 2015;136:2204–9.  https://doi.org/10.1002/ijc.29266.CrossRefPubMedGoogle Scholar
  56. 56.
    Easton DF, Pooley KA, Dunning AM, Pharoah PD, Thompson D, Ballinger DG, et al. Genome-wide association study identifies novel breast cancer susceptibility loci. Nature. 2007;447(7148):1087–93.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Amir E, Freedman OC, Seruga B, Evans DG. Assessing women at high risk of breast cancer: a review of risk assessment models. J Natl Cancer Inst. 2010;102(10):680–69.PubMedCrossRefGoogle Scholar
  58. 58.
    University of Pennsylvania Abramson Cancer Center. The Penn II BRCA1 and BRCA2 mutation risk evaluation model. Philadelphia, PA. https://www.afcri.upenn.edu:8022/itacc/penn2/index.asp. Accessed 29 May 2009.
  59. 59.
    Gilpin CA, Carson N, Hunter AG. A preliminary validation of a family history assessment form to select women at risk for breast or ovarian cancer for referral to a genetics center. Clin Genet. 2000;58(4):299–308.PubMedCrossRefGoogle Scholar
  60. 60.
    Evans DGR, Eccles DM, Rahman N, Young K, Bulman M, Amir E, et al. A new scoring system for the chances of identifying a BRCA1/2 mutation, outperforms existing models including BRCAPRO. J Med Genet. 2004;41(6):474–80.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Weitzel JN, Lagos VI, Cullinane CA, Gambol PJ, Culver JO, Blazer KR, et al. Limited family structure and BRCA gene mutation status in single cases of breast cancer. JAMA. 2007;297(23):2587–95.PubMedCrossRefGoogle Scholar
  62. 62.
    Quillin JM, Ramakrishnan V, Borzelleca J, Bodurtha J, Bowen D, Baer Wilson D. Paternal relatives and family history of breast cancer. Am J Prev Med. 2006;31(3):265–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Murabito JM, Nam BH, D’Agostino RB Sr, Lloyd-Jones DM, O’Donnell CJ, Wilson PW. Accuracy of offspring reports of parental cardiovascular disease history: the Framingham Offspring Study. Ann Intern Med. 2004;140(6):434–40.PubMedCrossRefGoogle Scholar
  64. 64.
    Douglas FS, O’Dair LCO, Robinson M, Evans DGR, Lynch SA. The accuracy of diagnosis as reported by the proband in families with cancer: a retrospective study. J Med Genet. 1999;36(4):309–12.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Liede A, Karlan BY, Narod SA. Cancer risks for male carriers of germline mutations in BRCA1 or BRCA2: a review of the literature. J Clin Oncol. 2004;22(4):735–42.PubMedCrossRefGoogle Scholar
  66. 66.
    Antoniou AC, Cunningham AP, Peto J, Evans DG, Lalloo F, Narod SA, et al. The BOADICEA model of genetic susceptibility to breast and ovarian cancers: updates and extensions. Br J Cancer. 2008;98(8):1457–66.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Evans DG, Lalloo F, Cramer A, Jones EA, Knox F, Amir E, et al. Addition of breast cancer pathological correlates significantly improves the performance of the Manchester scoring system for BRCA1 and BRCA2 testing. J Med Genet. 2009;46(12):811–7.PubMedCrossRefGoogle Scholar
  68. 68.
    Gail MH, Brinton LA, Byar DP, Corle DK, Green SB, Schairer C, et al. Projecting individualized probabilities of developing breast cancer for white females who are being examined annually. J Natl Cancer Inst. 1989;81(24):1879–86.PubMedCrossRefGoogle Scholar
  69. 69.
    Spiegelman D, Colditz GA, Hunter D, Hertzmark E. Validation of the Gail et al. model for predicting individual breast cancer risk. J Natl Cancer Inst. 1994;86(8):600–7.PubMedCrossRefGoogle Scholar
  70. 70.
    Costantino JP, Gail MH, Pee D, Anderson S, Redmond CK, Benichou J, et al. Validation studies for models projecting the risk of invasive and total breast cancer incidence. J Natl Cancer Inst. 1999;91(18):1541–8.PubMedCrossRefGoogle Scholar
  71. 71.
    Cummings SR, Tice JA, Bauer S, Browner WS, Cuzick J, Ziv E, et al. Prevention of breast cancer in postmenopausal women: approaches to estimating and reducing risk. J Natl Cancer Inst. 2009;101(6):384–98.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Pankratz VS, Hartmann LC, Degnim AC, Vierkant RA, Ghosh K, Vachon CM, et al. Assessment of the accuracy of the Gail model in women with atypical hyperplasia. J Clin Oncol. 2008;26(33):5374–9.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Claus EB, Risch N, Thompson WD. Autosomal dominant inheritance of early onset breast cancer: implications for risk prediction. Cancer. 1994;73(3):643–51.PubMedCrossRefGoogle Scholar
  74. 74.
    Tischkowitz M, Wheeler D, France E, Chapman C, Lucassen A, Sampson J, et al. A comparison of methods currently used in clinical practice to estimate familial breast cancer risks. Ann Oncol. 2000;11(4):451–4.PubMedCrossRefGoogle Scholar
  75. 75.
    McGuigan KA, Ganz PA, Breant C. Agreement between breast cancer risk estimation methods. J Natl Cancer Inst. 1996;88(18):1315–7.PubMedCrossRefGoogle Scholar
  76. 76.
    McTiernan A, Kuniyuki A, Yasui Y, Bowen D, Burke W, Culver JB, et al. Comparisons of two breast cancer risk estimates in women with a family history of breast cancer. Cancer Epidemiol Biomark Prev. 2001;10(4):333–8.Google Scholar
  77. 77.
    Parmigiani G, Berry DA, Aguilar O. Determining carrier probabilities for breast cancer-susceptibility genes BRCA1 and BRCA2. Am J Hum Genet. 1998;62:145–58.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Claus EB, Schildkraut JM, Thompson WD, Risch NJ. The genetic attributable risk of breast and ovarian cancer. Cancer. 1996;77:2318–24.PubMedCrossRefGoogle Scholar
  79. 79.
    Ford D, Easton DF, Stratton M, Narod S, Goldgar D, Devilee P, et al. Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. Am J Hum Genet. 1998;62:676–89.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Struewing JP, Hartge P, Wacholder S, Baker SM, Berlin M, McAdams M, et al. The risk of cancer associated with specific mutations of BRCA1 and BRCA2 among Askenazi Jews. N Engl J Med. 1997;336:1401–8.PubMedCrossRefGoogle Scholar
  81. 81.
    Jonker MA, Jacobi CE, Hoogendoorn WE, Nagelkerke NJ, de Bock GH, van Houwelingen JC. Modeling familial clustered breast cancer using published data. Cancer Epidemiol Biomark Prev. 2003;12(12):1479–85.Google Scholar
  82. 82.
    Tyrer J, Duffy SW, Cuzick J. A breast cancer prediction model incorporating familial and personal risk factors. Stat Med. 2004;23(7):1111–30.PubMedCrossRefGoogle Scholar
  83. 83.
    Antoniou AC, Pharoah PP, Smith P, Easton DF. The BOADICEA model of genetic susceptibility to breast and ovarian cancer. Br J Cancer. 2004;91(8):1580–90.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    American Society of Clinical Oncology. Policy statement update: genetic testing for cancer susceptibility. J Clin Oncol. 2003;21:2397–406.CrossRefGoogle Scholar
  85. 85.
    U.S. Preventive Services Task Force. Risk assessment, genetic counseling, and genetic testing for BRCA-related cancer in women: recommendation statement. Am Fam Physician. 2015;91(2):online.Google Scholar
  86. 86.
    National Collaborating Centre for Cancer (UK). National Institute for Health and Care Excellence. Familial breast cancer: classification, care and managing breast cancer and related risks in people with a family history of breast cancer. Cardiff: National Collaborating Centre for Cancer; 2013.Google Scholar
  87. 87.
    Walsh T, Casadei S, Coats KH, Swisher E, Stray SM, Higgins J, et al. Spectrum of mutations in BRCA1, BRCA2, CHEK2, and TP53 in families at high risk of breast cancer. JAMA. 2006;295(12):1379–88.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    NCCN clinical practice guidelines in oncology: genetic/familial-high-risk assessment: breast and ovarian. Version 2.2016. NCCN.org.
  89. 89.
    Petrucelli N, Daly MB, Pal T. BRCA1- and BRCA2-associated hereditary breast and ovarian cancer. In: GeneReviews. Seattle, WA: University of Washington; 2016.Google Scholar
  90. 90.
    PDQ® Cancer Genetics Editorial Board. PDQ cancer genetics risk assessment and counseling. Bethesda, MD: National Cancer Institute. Updated 30 Nov 2017.Google Scholar
  91. 91.
    Kwong A, Ng EK, Tang EY, Wong CL, Law FB, Leung CP, et al. A novel de novo BRCA1 mutation in a Chinese woman with early onset breast cancer. Familial Cancer. 2011;10:233–7.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Zhang L, Fleischut MH, Kohut K, Spencer S, Wong K, Stadler ZK, et al. Assessment of the prevalence of de novo mutations in the BRCA1 and BRCA2 genes. Clin Genet. 2011;80:97–8.PubMedCrossRefGoogle Scholar
  93. 93.
    De Leeneer K, Coene I, Crombez B, Simkens J, van den Broecke R, Bols A, Stragier B, Vanhoutte I, De Paepe A, Poppe B, Claes K. Prevalence of BRCA1/2 mutations in sporadic breast/ovarian cancer patients and identification of a novel de novo BRCA1 mutation in a patient diagnosed with late onset breast and ovarian cancer: implications for genetic testing. Breast Cancer Res Treat. 2012;132:87–95.PubMedCrossRefGoogle Scholar
  94. 94.
    Gaff C, Collins V, Symes T, Halliday J. Facilitating family communication about predictive testing: probands’ perspectives. J Genet Couns. 2005;14:133–40.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Nidhi Arora
    • 1
  • Sumita Mehta
    • 2
  1. 1.Department of Fetal MedicineRainbow HospitalNew DelhiIndia
  2. 2.Department of Obstetrics and GynecologyBabu Jagjivan Ram Memorial HospitalNew DelhiIndia

Personalised recommendations