Advertisement

Stochastic Dominance Relations for Integer Variables

  • Satya R. Chakravarty
  • Claudio ZoliEmail author
Chapter
Part of the Themes in Economics book series (THIE)

Abstract

The objective of this paper is to derive some integer-majorization results for variable-sum comparisons. We use an axiomatic framework to establish equivalence between several intuitively reasonable conditions. © 2011 Elsevier Inc. All rights reserved.

Keywords

Stochastic dominance Generalized Lorenz curve Grids Integers Measures Majorization 

JEL classification

D63 D81 

Notes

Acknowledgements

For comments and suggestions, we are grateful to two referees, an associate editor of this journal, Vincenzo Denicolò and participants of the JET Symposium on “Inequality and Risk”, Paris, June 25–26, 2010. Chakravarty thanks the Bocconi University, Milan, Italy, for support. Financial support from the Italian Ministero dell’Istruzione, dell’Università e della Ricerca (Prin 2007) is gratefully acknowledged by Claudio Zoli.

References

  1. Aboudi, R., & Thon, D. (1995). The duality approach to stochastic dominance with standardized random variables. Mimeo.Google Scholar
  2. Aboudi, R., & Thon, D. (2006). Refinements of Muirhead’s lemma and income inequality. Mathematical Social Sciences, 51, 201–216.CrossRefGoogle Scholar
  3. Akerlof, G. A. (1997). Social distance and social decision. Econometrica, 65, 1005–1027.CrossRefGoogle Scholar
  4. Allison, R. A., & Foster, J. E. (2004). Measuring health inequality using qualitative data. Journal of Health Economics, 23, 505–524.CrossRefGoogle Scholar
  5. Atkinson, A. B. (1970). On the measurement of inequality. Journal of Economic Theory, 2, 244–263.CrossRefGoogle Scholar
  6. Atkinson, A. B. (1998). Social exclusion, poverty and unemployment (pp. 1–20). CASE/4, Centre for Analysis of Social Exclusion, London School of Economics.Google Scholar
  7. Bossert, W., & Fleurbaey, M. (2002). Equitable insurance premium schemes. Social Choice and Welfare, 19, 113–125.CrossRefGoogle Scholar
  8. Chakravarty, S. R., & D’Ambrosio, C. (2006). The measurement of social exclusion. Review of Income and Wealth, 52, 377–398.CrossRefGoogle Scholar
  9. Dasgupta, P., Sen, A. K., & Starrett, D. (1973). Notes on the measurement of inequality. Journal of Economic Theory, 6, 180–187.CrossRefGoogle Scholar
  10. Deineko, V. G., Klinz, B., & Woeginger, G. J. (2009). The complexity of computing the Muirhead–Dalton distance. Mathematical Social Sciences, 57, 282–284.CrossRefGoogle Scholar
  11. Fishburn, P., & Lavalle, I. H. (1995). Stochastic dominance on unidimensional grids. Mathematical Operations Research, 20(3), 513–525.CrossRefGoogle Scholar
  12. Hardy, G. H., Littlewood, J. E., & Pólya, G. (1934). Inequalities. Cambridge: Cambridge University Press.Google Scholar
  13. Kolm, S. C. (1969). The optimal production of social justice. In J. Margolis & H. Guitton (Eds.), Public economics (pp. 145–200). London: Macmillan.CrossRefGoogle Scholar
  14. Levy, H. (2006). Stochastic dominance. Investment decision making under uncertainty (2nd ed.). New York: Springer.Google Scholar
  15. Marshall, A. W., & Olkin, I. (1979). Inequalities: Theory of majorization and its applications. New York: Academic Press.Google Scholar
  16. Milne, F., & Neave, E. (1994). Dominance relations among standardized variables. Management Science, 40(10), 1343–1352.CrossRefGoogle Scholar
  17. Muirhead, R. F. (1903). Some methods applicable to identities and inequalities of symmetric algebraic functions of letters. Proceedings of the Edinburgh Mathematical Society, 21, 144–167.CrossRefGoogle Scholar
  18. Rothschild, M., & Stiglitz, J. E. (1970). Increasing risk: I. A definition. Journal of Economic Theory, 3, 225–243.Google Scholar
  19. Rothschild, M., & Stiglitz, J. E. (1973). Some further results on the measurement of inequality. Journal of Economic Theory, 6, 188–204.CrossRefGoogle Scholar
  20. Savaglio, E., & Vannucci, S. (2007). Filtral preorders and opportunity inequality. Journal of Economic Theory, 132, 474–492.CrossRefGoogle Scholar
  21. Shaked, M., & Shanthikumar, G. (2006). Stochastic orders. New York: Springer.Google Scholar
  22. Shorrocks, A. F. (1983). Ranking income distributions. Economica, 50(2), 3–17.CrossRefGoogle Scholar
  23. Weymark, J. A. (1981). Generalized Gini inequality indices. Mathematical Social Sciences, 1, 409–430.CrossRefGoogle Scholar
  24. Weymark, J. A. (2003). Generalized Gini indices of equality of opportunity. The Journal of Economic Inequality, 1, 5–24.CrossRefGoogle Scholar
  25. Yaari, M. E. (1987). The dual theory of choice under risk. Econometrica, 55, 95–115.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Indian Statistical InstituteKolkataIndia
  2. 2.Dipartimento di Scienze EconomicheUniversità degli Studi di VeronaVeronaItaly

Personalised recommendations