Advertisement

Functional Diversity of Plant Endophytes and Their Role in Assisted Phytoremediation

  • Angélica Leonor Guerrero-Zúñiga
  • Eugenia López-López
  • Aída Verónica Rodríguez-Tovar
  • Angélica Rodríguez-Dorantes
Chapter

Abstract

The functional diversity term helps to understand the biological complexity through the wide range of interactions that organisms show on communities and ecosystems as they may interact. In a particular manner, organisms may have attributes or characteristics that define their role within the ecosystems. The purpose of this review is to analyze the importance of plant growth-promoting traits of endophyte bacteria that define the functional diversity of them in their relationships with plants in assisted phytoremediation techniques.

Keywords

Plant growth-promoting bacteria Endophytes Functional diversity Phytoremediation 

Notes

Acknowledgments

The authors are grateful to the Research Project, SIP-20131494 and SIP-20141314 of the Secretaría de Investigación y Posgrado del Instituto Politécnico Nacional, Comisión de Operaciones y Fomento de Actividades Académicas (COFAA-IPN), EDI (Estímulo al Desempeño de Investigadores-I.P.N.), and Sistema Nacional de Investigadores (SNI-CONACyT), and the fellowships for its support.

References

  1. Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–181CrossRefGoogle Scholar
  2. Atlas RM, Bartha R (1993) Microbial ecology fundamentals and applications, 3rd edn. Benjamin Cummings Publishing, New YorkGoogle Scholar
  3. Babu AG, Shea PJ, Sudhakar D, Jung IB, Oh BT (2015) Potential use of Pseudomonas koreensis AGB-1 in association with Miscanthus sinensis to remediate heavy metal(loid)-contaminated mining site soil. J Environ Manag 151:160–166CrossRefGoogle Scholar
  4. Bano N, Musarrat J (2003) Characterization of a new Pseudomonas aeruginosa strain NJ-15 as a potential biocontrol agent. Curr Microbiol l46:324–328CrossRefGoogle Scholar
  5. Barea JM, Pozo M, Azcón R, Azcón-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56:1761–1778CrossRefGoogle Scholar
  6. Becerra-Castro C, Monterroso C, Prieto-Fernández A, Rodríguez-Lamas L, Loureiro-Viñas M, Acea MJ, Kidd PS (2012) Pseudometallophytes colonizing Pb/Zn mine tailings: a description of the plant-microorganism-rhizosphere soil system and isolation of metal-tolerant bacteria. J Hazard Mater 217–218:350–359CrossRefGoogle Scholar
  7. Becerra-Castro C, Kidd P, Kuffner M, Prieto-Fernández A, Hann S, Monterroso C, Sessitsch A, Wenzel A, Puschenreiter M (2013) Bacterially induced weathering of ultramafic rock and its implications for phytoextraction. Appl Environ Microbiol 79:5094–5103CrossRefGoogle Scholar
  8. Boruvka L, Vacek O, Jehlicka J (2005) Principal component analysis as a tool to indicate the origin of potentially toxic elements in soils. Geoderma 128:289–300CrossRefGoogle Scholar
  9. Botta-Dukát Z (2005) Rao’s quadratic entropy as a measure of functional diversity based on multiple traits. J Veg Sci 16:533–540CrossRefGoogle Scholar
  10. Cabello-Conejo MI, Becerra-Castro C, Prieto-Fernández A, Monterroso C, Saavedra-Ferro A, Mench M, Kidd PS (2014) Rhizobacterial inoculants can improve nickel phytoextraction by the hyperaccumulator Alyssum pintodasilvae. Plant Soil 379:35–50CrossRefGoogle Scholar
  11. Cattelan AJ, Hartel PG, Furhmann FF (1999) Screening for plant growth promoting rhizobacteria to promote early soybean growth. Soil Sci Soc Am J 63:1670–1680CrossRefGoogle Scholar
  12. Cederlund H, Thierfelder T, Stenströma J (2008) Functional microbial diversity of the railway track bed. Sci Total Environ 397:205–214CrossRefGoogle Scholar
  13. Chapin FSI, Bret-Harte MS, Hobbie SE, Hailan Z (1996) Plant functional types as predictors of transient responses of arctic vegetation to global change. J Veg Sci 7:347–358CrossRefGoogle Scholar
  14. Charudattan R (1991) The mycoherbicide approach with plant pathogens. In: Te Beast DO (ed) Microbial control of weeds. Chapman and Hall, New York, pp 24–57CrossRefGoogle Scholar
  15. Chen L, Luo SL, Li XJ, Wan Y, Chen JL, Liu CB (2014) Interaction of Cd hyperaccumulator Solanum nigrum L. and functional endophyte Pseudomonas sp. Lk9 on soil heavy metals uptake. Soil Biol Biochem 68:300–308CrossRefGoogle Scholar
  16. Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in therhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678CrossRefGoogle Scholar
  17. Dharni S, Srivastava AK, Samad A, Patra DD (2014) Impact of plant growth promoting Pseudomonas monteilii PsF84 and Pseudomonas plecoglossicidas F610 on metal uptake and production of secondary metabolite (monoterpenes) by rose-scented geranium (Pelargonium graveolens cv. bourbon) grown on tannery sludge amended soil. Chemosphere 117:433–439CrossRefGoogle Scholar
  18. Díaz S, Cabido M (1997) Plant functional types and ecosystem function in relation to global change. J Veg Sci 8:463–474CrossRefGoogle Scholar
  19. Flaishman MA, Eyal Z, Zilberstein A, Voisard C, Hass D (1996) Suppression of Septoria tritici blotch and leaf rust of wheat by recombinant cyanide-producing strains of Pseudomonas putida. Mol Plant-Microbe Interact 9:642–645CrossRefGoogle Scholar
  20. Fonseca CR, Ganade G (2001) Species functional redundancy, random extinctions and the stability of ecosystems. J Ecol 89:118–125CrossRefGoogle Scholar
  21. Frankenberger WT Jr, Arshad M (1995) Phytohormones in soil: microbial production and function. Marcel Dekker, New YorkGoogle Scholar
  22. Gadd GM (2004) Microbial influence on metal mobility and application for bioremediation. Geoderma 122:109–119CrossRefGoogle Scholar
  23. Gadd GM (2005) Microorganisms in toxic metal polluted soils. In: Buscot F, Varma A (eds) Microorganisms in soils: roles in genesis and functions. Springer, Berlin, pp 325–356CrossRefGoogle Scholar
  24. Gadd GM (2010) Metals: minerals and microbes: geomicrobiology and bioremediation. Microbiology 156:609–643CrossRefGoogle Scholar
  25. Garcia de Salamon IE, Hynes RK, Nelson LM (2001) Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Can J Microbiol 47:404–411CrossRefGoogle Scholar
  26. Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117CrossRefGoogle Scholar
  27. Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374CrossRefGoogle Scholar
  28. Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39CrossRefGoogle Scholar
  29. Glick BR, Karaturovic DM, Newell PC (1995) A novel procedure for rapid isolation of plant growth promoting pseudomonas. Can J Microbiol 41:533–536CrossRefGoogle Scholar
  30. Göhre V, Paszkowski U (2006) Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 223:1115–1122CrossRefGoogle Scholar
  31. Griffiths BS, Ritz K, Bardgett RD, Cook R, Christensen S, Ekelund F, Sørensen SJ, Bååth E, Bloem J, De Ruiter PC, Dolfing J, Nicolardot B (2000) Ecosystem response of pasture soil communities to fumigation-induced microbial diversity reductions: an examination of the biodiversity–ecosystem function relationship. Oikos 90:279–294CrossRefGoogle Scholar
  32. Griffiths BS, Ritz K, Wheatley R, Kuan HL, Boag B, Christensen S, Ekelund F, Sørensen SJ, Muller S, Bloem J (2001) An examination of the biodiversity–ecosystem function relationship in arable soil microbial communities. Soil Biol Biochem 33:1713–1722CrossRefGoogle Scholar
  33. Guiffre L, Romaniuk R, Conti ME, Bartoloni N (2006) Multivariate evaluation by quality indicators of no-tillage system in Argiudolls of rolling pampa (Argentina). Biol Fertil Soils 42:556–560CrossRefGoogle Scholar
  34. He H, Ye Z, Yang D, Yan J, Xiao L, Zhong T, Yuan M, Cai X, Fang Z, Jing Y (2013) Characterization of endophytic Rahnella sp. JN6 from Polygonum pubescens and its potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus. Chemosphere 90:1960–1965CrossRefGoogle Scholar
  35. Hector A, Schmid B, Beierkuhnlein C, Caldeira MC, Diemer M, Dimitrakopoulos PG, Finn JA, Freitas H, Giller PS, Good J, Harris R, Högberg P, Huss-Danell K, Joshi J, Jumpponen A, Körner C, Leadley PW, Loreau M, Minns A, Mulder CPH, O’Donovan G, Otway SJ, Pereira JS, Prinz A, Read DJ, Scherer-Lorenzen M, Schulze ED, Siamantziouras ASD, Spehn EM, Terry AC, Troumbis AY, Woodward FI, Yachi S, Lawton JH (1999) Plant diversity and productivity experiments in European grassland. Science 286:1123–1127CrossRefGoogle Scholar
  36. Hooper DU (1998) The role of complementarity and competition in ecosystem responses to variation in plant diversity. Ecology 79:704–719CrossRefGoogle Scholar
  37. Hughes JB, Hellmann JJ, Ricketts TH, Bohannan BJM (2001) Minireview: counting the uncountable: statistical approaches to estimating microbial diversity. Appl Environ Microbiol 67:4399–4406CrossRefGoogle Scholar
  38. Kebede YK, Kebedee T (2012) Application of principal component analysis in surface water quality monitoring. In: Sanguansat P.(Ed.), Principal component analysis – engineering applications. In TechGoogle Scholar
  39. Khan AG (2005) Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol 18:355–364CrossRefGoogle Scholar
  40. Khan MS, Zaidi A, Aamil M (2002) Biocontrol of fungal pathogens by the use of plant growth promoting rhizobacteria and nitrogen fixing microorganisms. Indian J Bot Soc 81:255–263Google Scholar
  41. Khan MS, Zaidi A, Wani PA, Ahemad M, Oves M (2009) Functional diversity among plant growth-promoting rhizobacteria: current status. In: Khan MS (ed) Microbial strategies for crop improvement. Springer, Berlin/HeidelbergCrossRefGoogle Scholar
  42. Kidd P, Barcelo J, Bernal MP, Navari-Izzo F, Poschenrieder C, Shilev S, Rafael C, Monterroso C (2009) Trace element behaviour at the root-soil interface: implications in phytoremediation. Environ Exp Bot 67:243–259CrossRefGoogle Scholar
  43. Kirk JL, Beaudette LA, Hart M, Moutoglis P, Klironomos JN, Lee H, Trevors JA (2004) Methods of studying soil microbial diversity. J Microbiol Meth 58:169–188CrossRefGoogle Scholar
  44. Kloepper JW, Schroth MN (1978) Plant growth-promoting rhizobacteria on radishes. Fourth International Conference on Plant Pathogen Bacteria, Angers, France, Vol 2. pp 879–882Google Scholar
  45. Kremer RJ, Begonia MFT, Lynn S, Lanham ET (1990) Characterization of rhizobacteria associated with weed seedlings. Appl Environ Microbiol 56:1646–1655Google Scholar
  46. Lebeau T, Braud A, Jezequel K (2008) Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: a review. Environ Pollut 153:497–522CrossRefGoogle Scholar
  47. Leishman MR, Westoby M (1992) Classifying plants into groups on the basis of associations of individual traits - evidence from Australian semi-arid woodlands. J Ecol 80:417–424CrossRefGoogle Scholar
  48. Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556CrossRefGoogle Scholar
  49. Luo SL, Chen L, Chen JL, Xiao X, Xu TY, Wan Y, Rao C, Liu C, Liu Y, Lai C, Zeng GM (2011) Analysis and characterization of cultivable heavy metal-resistant bacterial endophytes isolated from Cd-hyperaccumulator Solanum nigrum L. and their potential use for phytoremediation. Chemosphere 85:1130–1138CrossRefGoogle Scholar
  50. Ma Y, Rajkumar M, Luo YM, Freitas H (2011) Inoculation of endophytic bacteria on host and non-host plants e effects on plant growth and Ni uptake. J Hazard Mater 195:230–237CrossRefGoogle Scholar
  51. Ma Y, Oliveira RS, Nai FJ, Rajkumar M, Luo YM, Rocha I, Freitas H (2015a) The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil. J Environ Manag 156:62–69CrossRefGoogle Scholar
  52. Ma Y, Rajkumar M, Rocha I, Oliveira RS, Freitas H (2015b) Serpentine bacteria influence metal translocation and bioconcentration of Brassica juncea and Ricinus communis grown in multi-metal polluted soils. Front Plant Sci 5:1–13CrossRefGoogle Scholar
  53. Ma Y, Rajkumar M, Zhang C, Freitas H (2016) Beneficial role of bacterial endophytes in heavy metal phytoremediation. J Environ Manag 174:14–25CrossRefGoogle Scholar
  54. Mahmoud SAZ, Ramadan EM, Thabet FM, Khater T (1984) Production of plant growth promoting substances by rhizosphere microorganisms. Zbl Mikrobiol 139:227–232Google Scholar
  55. Maropola MK, Ramond JB, Trindade M (2015) Impact of metagenomic DNA extraction procedures on the identifiable endophytic bacterial diversity in Sorghum bicolor (L. Moench). J Microbiol Methods 112:104–117CrossRefGoogle Scholar
  56. Mason NWH, MacGillivray K, Steel JB, Wilson JB (2003) An index of functional diversity. J Veg Sci 14:571–578CrossRefGoogle Scholar
  57. Muehe EM, Weigold P, Adaktylou IJ, Planer-Friedrich B, Kraemer U, Kappler A, Behrens S (2015) Rhizosphere microbial community composition affects cadmium and zinc uptake of the metal-hyperaccumulating plant Arabidopsis halleri. Appl Environ Microbiol 81:2173–2181CrossRefGoogle Scholar
  58. Naeem S, Li S (1997) Biodiversity enhances ecosystem reliability. Nature 390:507–509CrossRefGoogle Scholar
  59. Naik RP, Sakthivel N (2006) Functional characterization of a novel hydrocarbonoclastic Pseudomonas sp. strain PUP6 with plant-growth-promoting traits and antifungal potential. Res Microbiol 157:538–546CrossRefGoogle Scholar
  60. Naik PR, Raman G, Narayanan KB, Sakthivel N (2008) Assessment of genetic and functional diversity of phosphate solubilizing fluorescent pseudomonads isolated from rhizospheric soil. BMC Microbiol 8:230CrossRefGoogle Scholar
  61. Ortega-Acosta O (2015) Análisis de la diversidad funcional de fitobacterias de plantas de Lemna gibba presente en tres sitios contrastantes del Sistema lacustre de Xochimilco. Tesis de Maestría. Escuela Nacional de CienciasBiológicas, InstitutoPolitécnico Nacional, Ciudad de México, MéxicoGoogle Scholar
  62. Ortega-Acosta O, Rodriguez-Tovar AV, López-López E, Rodríguez-Dorantes A (2015) Characterization of indole acetic acid endophyte producers in authoctonus Lemna gibba plants from Xochimilco Lake. Afr J Biotechnol 14:604–611Google Scholar
  63. O’Sullivan DJ, O’Hara F (1992) Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol Rev 56:662–676Google Scholar
  64. Ovreas L (2000) Population and community level approaches for analyzing microbial diversity in natural environments. Ecol Lett 3:236–251CrossRefGoogle Scholar
  65. Pace NR (1997) A molecular view of microbial diversity and the biosphere. Science 276:734–740CrossRefGoogle Scholar
  66. Petchey OL, Gaston KJ (2002a) Functional diversity (FD), species richness and community composition. Ecol Lett 5:402–411CrossRefGoogle Scholar
  67. Petchey OL, Gaston KJ (2002b) Extinction and the loss of functional diversity. Proc R Soc Lond Ser B Biol Sci 269:1721–1727CrossRefGoogle Scholar
  68. Petchey OL, Gaston KJ (2006) Functional diversity: back to basics and looking forward. Ecol Lett 9:741–775CrossRefGoogle Scholar
  69. Phetcharat P, Duangpaeng A (2012) Screening of endophytic bacteria from organic rice tissue for indole acetic acid production. Procedia Eng 32:177–183CrossRefGoogle Scholar
  70. Ramamoorthy V, Viswanathan R, Raguchander T, Prakasam V, Samiyappan R (2001) Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases. Crop Prot 20:1–11CrossRefGoogle Scholar
  71. Rastetter EB, Gough L, Hartley AE, Herbert DA, Nadelhoffer KJ, Williams M (1999) A revised assessment of species redundancy and ecosystem reliability. Conserv Biol 13:440–443CrossRefGoogle Scholar
  72. Renwick A, Campbell R, Coe S (1991) Assessment of in vivo screening systems for potential biocontrol agents of Gaeumannomyces graminis. Plant Pathol 40:524–532CrossRefGoogle Scholar
  73. Ricotta C (2005) A note on functional diversity measures. Basic Appl Ecol 6:479–486CrossRefGoogle Scholar
  74. Roscher C, Schumacher J, Baade J, Wilcke W, Gleixner G, Weisser WW, Schmid B, Schulze ED (2004) The role of biodiversity for element cycling and trophic interactions: and experimental approach in a grassland community. Basic Appl Ecol 5:107–112CrossRefGoogle Scholar
  75. Schulz B, Boyle C (2006) What are endophytes? In: Schulz BJE, Boyle CIC, Sieber TN (eds) Microbial root endophytes. Springer, Berlin, pp 1–13CrossRefGoogle Scholar
  76. Sessitsch A, Kuffner M, Kidd P, Vangronsveld J, Wenzel WW, Fallmann K, Puschenreiter M (2013) The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biol Biochem 60:182–194CrossRefGoogle Scholar
  77. Shanahan P, O’Sullivan DJ, Simpson P, Glennon JD, O’Gara F (1992) Isolation of 2, 4- diacetylphloroglucinol from a fluorescent pseudomonad and investigation of physiological parameters influencing its production. Appl Environ Microbiol 58:353–358Google Scholar
  78. Sharma M, Mishra V, Rau N, RSH S (2011a) Functionally diverse rhizobacteria of Saccharum munja (a native wild grass) colonizing abandoned morrum mine in Aravalli hills (Delhi). Plant Soil 341:447–459CrossRefGoogle Scholar
  79. Sharma SK, Johri BN, Ramesh A, Joshi OP, Sai Prasad SV (2011b) Selection of plant growth-promoting Pseudomonas spp. that enhanced productivity of soybean-wheat cropping system in Central India. J Microbiol Biotechnol 21:1127–1142CrossRefGoogle Scholar
  80. Shukla MK, Lal R, Ebinger M (2004) Principal component analysis for predicting corn biomass and grain yield. Soil Sci 169:215–224CrossRefGoogle Scholar
  81. Sokal RR, Sneath PH (1973) Principles of numerical taxonomy. W.H. Freeman and Company, San FranciscoGoogle Scholar
  82. Somers E, Vanderleyden J, Srinivasan M (2004) Rhizosphere bacterial signaling: a love parade beneath our feet. Crit Rev Microbiol 30:205–240CrossRefGoogle Scholar
  83. Stevens RD, Cox SB, Strauss RE, Willig MR (2003) Patterns of functional diversity across an extensive environmental gradient: vertebrate consumers, hidden treatments and latitudinal trends. Ecol Lett 6:1099–1108CrossRefGoogle Scholar
  84. Sunishkumar R, Ayyadurai N, Pandiaraja P, Reddy AV, Venkateswarlu Y, Prakash O, Sakthivel N (2005) Characterization of antifungal metabolite produced by a new strain Pseudomonas aeruginosa PUPa3 that exhibits broad-spectrum antifungal activity and biofertilizing traits. J Appl Microbiol 98:145–154CrossRefGoogle Scholar
  85. Tilman D (2001) Functional diversity. In: Levin SA (ed) Encyclopaedia of biodiversity. Academic Press, San Diego, pp 109–120CrossRefGoogle Scholar
  86. Tilman D, Reich PB, Knops J, Wedin D, Mielke T, Lehman CL (2001) Diversity and productivity in a long-term grassland experiment. Science 294:843–845CrossRefGoogle Scholar
  87. Trevors JT (1998) Bacterial biodiversity in soil with an emphasis on chemically-contaminated soils. Water Air Soil Pollut 101:45–67CrossRefGoogle Scholar
  88. Ullah A, Heng S, Farooq M, Munis H, Fahad S, Yang X (2015) Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review. Environ Exp Bot 117:28–40CrossRefGoogle Scholar
  89. Villegas J, Fortin JA (2001) Phosphorus solubilization and pH changes as a result of the interactions between soil bacteria and arbuscular mycorrhizal fungi on a medium containing NO3as nitrogen source. Can J Bot 80:571–576CrossRefGoogle Scholar
  90. Visioli G, D’Egidio S, Vamerali T, Mattarozzi M, Sanangelantoni AM (2014) Culturable endophytic bacteria enhance Ni translocation in the hyperaccumulator Noccaea caerulescens. Chemosphere 117:538–544CrossRefGoogle Scholar
  91. Walker B, Kinzig A, Langridge J (1999) Plant attribute diversity, resilience, and ecosystem function: the nature and significance of dominant and minor species. Ecosystems 2:95–113CrossRefGoogle Scholar
  92. Wani PA, Khan MS, Zaidi A (2007a) Synergistic effects of the inoculation with nitrogen fixing and phosphate-solubilizing rhizobacteria on the performance of field grown chickpea. J Plant Nutr Soil Sci 170:283–287CrossRefGoogle Scholar
  93. Wani PA, Khan MS, Zaidi A (2007b) Chromium reduction, plant growth promoting potentials and metal solubilization by Bacillus sp. isolated from alluvial soil. Curr Microbio l54:237–243CrossRefGoogle Scholar
  94. Wani PA, Khan MS, Zaidi A (2007c) Co inoculation of nitrogen fixing and phosphate solubilizing bacteria to promote growth, yield and nutrient uptake in chickpea. Acta Agron Hung 55:315–323CrossRefGoogle Scholar
  95. Wertz S, Degrange V, Jl P, Poly F, Commeaux C, Freitag T, Guillaumaud N, Le Roux J (2006) Maintenance of soil functioning following erosion of microbial diversity. Environ Microbiol 8:2162–2169CrossRefGoogle Scholar
  96. Yan-de J, Zhen-li H, Xiao-e Y (2007) Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. J Zhejiang Univ Sci B8:192–207Google Scholar
  97. Zaidi A (1999) Synergistic interactions of nitrogen fixing microorganisms with phosphate mobilizing microorganisms. PhD thesis, Aligarh Muslim University, AligarhGoogle Scholar
  98. Zak JC, Willig MR, Moorhead DL, Wildman HG (1994) Functional diversity of microbial communities. Soil Biol Biochem 26:1101–1108CrossRefGoogle Scholar
  99. Zheng YK, Qiao XG, Miao CP, Liu K, Chen YW, Xu LH, Zhao LX (2016) Diversity, distribution and biotechnological potential of endophytic fungi. Ann Microbiol 66:529–542CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Angélica Leonor Guerrero-Zúñiga
    • 1
  • Eugenia López-López
    • 2
  • Aída Verónica Rodríguez-Tovar
    • 3
  • Angélica Rodríguez-Dorantes
    • 4
  1. 1.Gerencia de Transformación de BiomasaInstituto Mexicano del PetróleoCiudad de MéxicoMexico
  2. 2.Laboratorio de Evaluación de la Salud de los Ecosistemas Acuáticos, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Prol. Carpio y Plan de Ayala, S/N, Unidad Profesional Lázaro CárdenasInstituto Politécnico NacionalCiudad de MéxicoMexico
  3. 3.Laboratorio de Micología, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Prol. Carpio y Plan de Ayala, S/N, Unidad Profesional Lázaro CardenasInstituto Politécnico NacionalCiudad de MéxicoMexico
  4. 4.Laboratorio de Fisiología Vegetal, Departamento de Botánica, Escuela Nacional de Ciencias Biológicas, Prol. Carpio y Plan de Ayala, S/N, Unidad Profesional Lázaro CardenasInstituto Politécnico NacionalCiudad de MéxicoMexico

Personalised recommendations