Advertisement

The Stochastic Multi-cloud Model (SMCM) ConvectiveParameterizationin the CFSv2: Scopes and Opportunities

  • B. B. GoswamiEmail author
  • B. Khouider
  • R. Phani
  • Parthasarathi Mukhopadhyay
  • A. J. Majda
Chapter
Part of the Springer Atmospheric Sciences book series (SPRINGERATMO)

Abstract

A stochastic multi-cloud model (SMCM) convective parameterization is incorporated in the National Centers for Environmental Predictions’ Climate Forecast System version 2 (CFSV2). The resulting model is referred to here as CFSsmcm. Two 15-year-long climate simulations of the CFSsmcm, differing only by one SMCM parameter, namely, the mid-tropospheric dryness parameter, MTD0 are analyzed and interpreted here. This particular parameter is chosen because not only it plays a crucial role in the SMCM formulation, but also is observed to be critical for triggering tropical convection. In one case, we have used a single homogeneous MTD0 value for the entire globe and in the other run two different MTD0 values are used for land and ocean. The global precipitation climatology significantly improves in the inhomogeneous MTD0 case without significantly affecting the excellent performance of the CFSsmcm in terms of the intraseasonal and synoptic variability as documented in previous publications.

Keywords

Stochastic Parameterization Convection Cloud 

References

  1. Ajayamohan, R.S., B. Khouider, A.J. Majda, and Q. Deng. 2016. Role of stratiform heating on the organization of convection over the monsoon trough. Climate Dynamics, 1–20.  https://doi.org/10.1007/s00382-016-3033-7.CrossRefGoogle Scholar
  2. Arakawa, A. 2004. The cumulus parameterization problem: Past, present, and future. Journal of Climate 17 (13): 2493–2525.  https://doi.org/10.1175/1520-0442(2004)017<2493:RATCPP>2.0.CO;2.CrossRefGoogle Scholar
  3. Arakawa, A., and W.H. Schubert. 1974. Interaction of a cumulus cloud ensemble with the large-scale environment. Part I. Journal of Atmosperic Science 31 (3): 674–701.  https://doi.org/10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2.
  4. Betts, A.K., and M.J. Miller. 1986. A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and arctic air-mass data sets. Quarterly Journal of the Royal Meterological Society 112 (473): 693–709.  https://doi.org/10.1002/qj.49711247308.Google Scholar
  5. Buizza, R., M. Milleer, and T.N. Palmer. 1999. Stochastic representation of model uncertainties in the ECMWF ensemble prediction system. Quarterly Journal of the Royal Meteorological Society 125 (560): 2887–2908.  https://doi.org/10.1002/qj.49712556006.CrossRefGoogle Scholar
  6. Davini, P., J. von Hardenberg, S. Corti, H.M. Christensen, S. Juricke, A. Subramanian, P.A.G. Watson, A. Weisheimer, and T.N. Palmer. 2016. Climate SPHINX: Evaluating the impact of resolution and stochastic physics parameterisations in climate simulations. Geoscientific Model Development Discussion 2016: 1–29.  https://doi.org/10.5194/gmd-2016-115.CrossRefGoogle Scholar
  7. De La Chevrotière, M., and B. Khouider. 2017. A zonally symmetric model for the monsoon-Hadley circulation with stochastic convective forcing. Theoretical and Computational Fluid Dynamics 31 (1): 89–110.  https://doi.org/10.1007/s00162-016-0407-8.CrossRefGoogle Scholar
  8. De La Chevrotière, M., B. Khouider Michèle, and A. Majda. 2015. Stochasticity of convection in Giga-LES data. Climate Dynamics 47 (5): 1845–1861.  https://doi.org/10.1007/s00382-015-2936-z.CrossRefGoogle Scholar
  9. Deng, Q., B. Khouider, and A.J. Majda. 2015. The MJO in a coarse-resolution GCM with a stochastic multicloud parameterization. Journal of Atmospheric Science 72 (1): 55–74.  https://doi.org/10.1175/JAS-D-14-0120.1.CrossRefGoogle Scholar
  10. Deng, Q., B. Khouider, A.J. Majda, and R.S. Ajayamohan. 2016. Effect of stratiform heating on the planetary-scale organization of tropical convection. Journal of Atmospheric Science 73 (1): 371–392.  https://doi.org/10.1175/JAS-D-15-0178.1.CrossRefGoogle Scholar
  11. Dorrestijn, J., D.T. Crommelin, A.P. Siebesma, H.J. Jonker, and F. Selten. 2016. Stochastic convection parameterization with Markov Chains in an intermediate-complexity GCM. Journal of Atmospheric Science 73 (3): 1367–1382.CrossRefGoogle Scholar
  12. Frenkel, Y., A.J. Majda, and B. Khouider. 2012. Using the stochastic multicloud model to improve tropical convective parameterization: A paradigm example. Journal of Atmospheric Science 69 (3): 1080–1105.  https://doi.org/10.1175/JAS-D-11-0148.1.CrossRefGoogle Scholar
  13. Frenkel, Y., A.J. Majda, and B. Khouider. 2013. Stochastic and deterministic multicloud parameterizations for tropical convection. Climate Dynamics 41 (5–6): 1527–1551.  https://doi.org/10.1007/s00382-013-1678-z.CrossRefGoogle Scholar
  14. Goswami, B.B., B. Khouider, R.P.M. Krishna, P. Mukhopadhyay, and A.J. Majda. 2017a. Improving synoptic and intra-seasonal variability in CFSv2 via stochastic representation of organized convection. Geophysics Research Letters 44 (2): 1104–1113.  https://doi.org/10.1002/2016GL071542.CrossRefGoogle Scholar
  15. Goswami, B.B., B. Khouider, R.P.M. Krishna, P. Mukhopadhyay, and A.J. Majda. 2017b. Implementation and calibration of a stochastic convective parameterization in the NCEP climate forecast system. Journal of Advances in Modeling Earth Systems (p. submitted).Google Scholar
  16. Goswami, B.B., B. Khouider, R.P.M. Krishna, P. Mukhopadhyay, and A.J. Majda. 2017c. Improved tropical modes of variability in the climate forecast system model (version 2) via a stochastic multicloud model. Journal of Atmospheric Science (submitted).Google Scholar
  17. Grabowski, W.W. 2001. Coupling cloud processes with the large-scale dynamics using the cloud-resolving convection parameterization (CRCP). Journal of Atmospheric Science. 58 (9): 978–997.  https://doi.org/10.1175/1520-0469(2001)058<0978:CCPWTL>2.0.CO;2.CrossRefGoogle Scholar
  18. Gregory, D., and P.R. Rowntree. 1990. A mass flux convection scheme with representation of cloud ensemble characteristics and stability-dependent closure. Monthly Weather Review 118 (7): 1483–1506.  https://doi.org/10.1175/1520-0493(1990)118<1483:AMFCSW>2.0.CO;2.CrossRefGoogle Scholar
  19. Huffman, G.J., R.F. Adler, D.T. Bolvin, and E.J. Nelkin. 2010. The TRMM multi-satellite precipitation analysis (TMPA). In Satellite rainfall applications for surface hydrology, 3–22. Berlin: Springer.  https://doi.org/10.1007/978-90-481-2915-7_1.Google Scholar
  20. Kain, J.S., and J.M. Fritsch. 1990. A one-dimensional entraining/detraining plume model and its application in convective parameterization. Journal of Atmospheric Science 47 (23): 2784–2802.  https://doi.org/10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2.CrossRefGoogle Scholar
  21. Kalnay, E., M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G. White, J. Woollen, Y. Zhu, A. Leetmaa, R. Reynolds, M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K.C. Mo, C. Ropelewski, J. Wang, R. Jenne, and D. Joseph. 1996. The NCEP/NCAR 40-Year reanalysis project. Bulletin of the American Meteorological Society 77 (3): 437–471.  https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.CrossRefGoogle Scholar
  22. Kasahara, A., and K. Puri. 1981. Spectral representation of three-dimensional global data by expansion in normal mode functions. Monthly Weather Review 109 (1): 37–51.  https://doi.org/10.1175/1520-0493(1981)109<0037:SROTDG>2.0.CO;2.CrossRefGoogle Scholar
  23. Khairoutdinov, M.F., and D.A. Randall. 2001. A cloud resolving model as a cloud parameterization in the NCAR community climate system model: Preliminary results. Geophysics Research Letters 28 (18): 3617–3620.  https://doi.org/10.1029/2001GL013552.CrossRefGoogle Scholar
  24. Khairoutdinov, M.F., S.K. Krueger, C.-H. Moeng, P.A. Bogenschutz, and D.A. Randall. 2009. Large-eddy simulation of maritime deep tropical convection. Journal of Advances in Modeling Earth Systems 1 (4).Google Scholar
  25. Khouider, B., and A.J. Majda. 2006. A simple multicloud parameterization for convectively coupled tropical waves. Part I: Linear analysis. Journal of Atmospheric Science 63 (4): 1308–1323.  https://doi.org/10.1175/JAS3677.1.CrossRefGoogle Scholar
  26. Khouider, B., and A.J. Majda. 2008. Multicloud models for organized tropical convection: Enhanced congestus heating. Journal of Atmospheric Science 65 (3): 895–914.  https://doi.org/10.1175/2007JAS2408.1.CrossRefGoogle Scholar
  27. Khouider, B., A.J. Majda, and M.A. Katsoulakis. 2003. Coarse-grained stochastic models for tropical convection and climate. Proceedings of the National Academy of Sciences United States of America 100 (21): 11,941–11,946.  https://doi.org/10.1073/pnas.1634951100.CrossRefGoogle Scholar
  28. Khouider, B., J. Biello, and A.J. Majda. 2010. A stochastic multicloud model for tropical convection. Communications in Mathematical Sciences 8 (1): 187–216.CrossRefGoogle Scholar
  29. Khouider, B., A. St-Cyr, A.J. Majda, and J. Tribbia. 2011. The MJO and convectively coupled waves in a coarse-resolution GCM with a simple multicloud parameterization. Journal of Atmospheric Science 68 (2): 240–264.  https://doi.org/10.1175/2010JAS3443.1.CrossRefGoogle Scholar
  30. Kuo, H.L. 1965. On formation and intensification of tropical cyclones through latent heat release by cumulus convection. Journal of Atmospheric Science 22 (1): 40–63.  https://doi.org/10.1175/1520-0469(1965)022<0040:OFAIOT>2.0.CO;2.CrossRefGoogle Scholar
  31. Liebmann, B., and C. Smith. 1996. Description of a complete (interpolated) outgoing longwave radiation dataset. Bulletin of the American Meteorological Society 77: 1275–1277.Google Scholar
  32. Lin, J.W.-B., and J.D. Neelin. 2000. Influence of a stochastic moist convective parameterization on tropical climate variability. Geophysics Research Letters 27 (22): 3691–3694.  https://doi.org/10.1029/2000GL011964.CrossRefGoogle Scholar
  33. Lin, J.W.-B., and J.D. Neelin. 2002. Considerations for stochastic convective parameterization. Journal of Atmospheric Science 59 (5): 959–975.  https://doi.org/10.1175/1520-0469(2002)059<0959:CFSCP>2.0.CO;2.CrossRefGoogle Scholar
  34. Lin, J. W.-B., and J.D. Neelin. 2003. Toward stochastic deep convective parameterization in general circulation models. Geophysics Research Letters 30 (4):  https://doi.org/10.1029/2002GL016203.
  35. Majda, A.J., and B. Khouider. 2002. Stochastic and mesoscopic models for tropical convection. Proceedings of the National Academy of Sciences of the United States of America 99 (3): 1123–1128.  https://doi.org/10.1073/pnas.032663199.CrossRefGoogle Scholar
  36. Palmer, T. 1996. On parameterizing scales that are only somewhat smaller than the smallest resolved scales, with application to convection and orography. In Workshop on New Insights and Approaches to Convective Parametrization, 4–7 Nov 1996, 328–337. ECMWF, Shinfield Park, Reading: ECMWF.Google Scholar
  37. Palmer, T.N. 2001. A nonlinear dynamical perspective on model error: A proposal for non-local stochastic-dynamic parametrization in weather and climate prediction models. Quarterly Journal of the Royal Meteorological Society 127 (572): 279–304.  https://doi.org/10.1002/qj.49712757202.CrossRefGoogle Scholar
  38. Peters, K., C. Jakob, L. Davies, B. Khouider, and A.J. Majda. 2013. Stochastic behavior of tropical convection in observations and a multicloud model. Journal of Atmospheric Science 70 (11): 3556–3575.  https://doi.org/10.1175/JAS-D-13-031.1.CrossRefGoogle Scholar
  39. Peters, K., T. Crueger, C. Jakob, and B. Möbis. 2017. Improved MJO-simulation in ECHAM6.3 by coupling a stochastic multicloud model to the convection scheme. Journal of Advances in Modeling Earth Systems.  https://doi.org/10.1002/2016MS000809.CrossRefGoogle Scholar
  40. Plant, R.S., and G.C. Craig. 2008. A stochastic parameterization for deep convection based on equilibrium statistics. Journal of Atmospheric Science 65: 87–105.  https://doi.org/10.1175/2007JAS2263.1.CrossRefGoogle Scholar
  41. Randall, D.A. 2013. Beyond deadlock. Geophysics Research Letter 40 (22): 5970–5976.  https://doi.org/10.1002/2013GL057998.CrossRefGoogle Scholar
  42. Saha, S., S. Moorthi, H.-L. Pan, X. Wu, J. Wang, S. Nadiga, P. Tripp, R. Kistler, J. Woollen, D. Behringer, H. Liu, D. Stokes, R. Grumbine, G. Gayno, J. Wang, Y.-T. Hou, H.-Y. Chuang, H.-M.H. Juang, J. Sela, M. Iredell, R. Treadon, D. Kleist, P. Van Delst, D. Keyser, J. Derber, M. Ek, J. Meng, H. Wei, R. Yang, S. Lord, H. Van Den Dool, A. Kumar, W. Wang, C. Long, M. Chelliah, Y. Xue, B. Huang, J.-K. Schemm, W. Ebisuzaki, R. Lin, P. Xie, M. Chen, S. Zhou, W. Higgins, C.-Z. Zou, Q. Liu, Y. Chen, Y. Han, L. Cucurull, R.W. Reynolds, G. Rutledge, and M. Goldberg. 2010. The NCEP climate forecast system reanalysis. Bulletin of the American Meteorological Society 91 (8): 1015–1057.  https://doi.org/10.1175/2010BAMS3001.1.CrossRefGoogle Scholar
  43. Satoh, M., H. Tomita, H. Miura, S. Iga, and T. Nasuno. 2005. Development of a global cloud resolving model a multi-scale structure of tropical convections. Journal of the Earth Simulator 3 (September): 11–19.Google Scholar
  44. Schumacher, C., M.H. Zhang, and P.E. Ciesielski. 2007. Heating structures of the TRMM field campaigns. Journal of Atmospheric Science 64 (7): 2593–2610.  https://doi.org/10.1175/JAS3938.1.CrossRefGoogle Scholar
  45. Stachnik, J.P., C. Schumacher, and P.E. Ciesielski. 2013. Total heating characteristics of the ISCCP tropical and subtropical cloud regimes. Journal of Climate 26 (18): 7097–7116.  https://doi.org/10.1175/JCLI-D-12-00673.1.CrossRefGoogle Scholar
  46. Takayabu, Y.N. 1994. Large-scale cloud disturbances associated with equatorial waves. Part II: Westward-propagating inertio-gravity waves. Journal of the Meteorological Society of Japan 72 (3): 451–465.CrossRefGoogle Scholar
  47. Teixeira, J., and C.A. Reynolds. 2008. Stochastic nature of physical parameterizations in ensemble prediction: A stochastic convection approach. Monthly Weather Review 136 (2): 483–496.  https://doi.org/10.1175/2007MWR1870.1.CrossRefGoogle Scholar
  48. Troen, I.B., and L. Mahrt. 1986. A simple model of the atmospheric boundary layer; Sensitivity to surface evaporation. Boundary Layer Meteorology 37 (1): 129–148.  https://doi.org/10.1007/BF00122760.CrossRefGoogle Scholar
  49. Waite, M.L., and B. Khouider. 2009. Boundary layer dynamics in a simple model for convectively coupled gravity waves. Journal of Atmospheric Science 66 (9): 2780–2795.  https://doi.org/10.1175/2009JAS2871.1.CrossRefGoogle Scholar
  50. Wheeler, M., and G.N. Kiladis. 1999. Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber-frequency domain. Journal of Atmospheric Science 56 (3): 374–399.  https://doi.org/10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2.CrossRefGoogle Scholar
  51. Yanai, M., S. Esbensen, and J.-H. Chu. 1973. Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. Journal of Atmospheric Science 30 (4): 611–627.CrossRefGoogle Scholar
  52. Zhang, G., and N.A. McFarlane. 1995. Sensitivity of climate simulations to the parameterization of cumulus convection in the canadian climate centre general circulation model. Atmosphere-Ocean 33 (3): 407–446.  https://doi.org/10.1080/07055900.1995.9649539.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • B. B. Goswami
    • 1
    Email author
  • B. Khouider
    • 1
  • R. Phani
    • 2
  • Parthasarathi Mukhopadhyay
    • 2
  • A. J. Majda
    • 3
    • 4
  1. 1.Department of Mathematics and StatisticsUniversity of VictoriaVictoriaCanada
  2. 2.Indian Institute of Tropical MeteorologyPuneIndia
  3. 3.Department of Mathematics and Center for Atmosphere and Ocean SciencesCourant Institute for Mathematical Sciences, New York UniversityNew York CityUSA
  4. 4.Center for Prototype Climate ModelsNew York University-Abu DhabiAbu DhabiUnited Arab Emirates

Personalised recommendations