Advertisement

Convection Initiation in Climate Models Using the Heated Condensation Framework: A Review

  • Rodrigo J. BombardiEmail author
  • Ahmed B. Tawfik
  • Lawrence Marx
  • Paul A. Dirmeyer
  • James L. Kinter III
Chapter
Part of the Springer Atmospheric Sciences book series (SPRINGERATMO)

Abstract

This chapter presents a review of the Heated Condensation Framework (HCF) theory and applications. The HCF offers an alternative approach to methods of parameterizing convection based on parcel theory. Formulated to take into account the role of atmospheric mixing within the boundary layer, the HCF uses profiles of temperature and humidity to quantify how conditioned the atmosphere is to moist free convection. The initiation of convection is evaluated based on both the availability of large-scale convective instability and local surface heating. Therefore, the HCF can be applied as a trigger function for convective parameterizations. When compared to conventional convective trigger criteria, the HCF triggers returns less false positives, and when implemented into the CFSv2 model, the HCF trigger improves the representation of the Indian monsoon and tropical cyclone intensity. From a climate perspective, applying the HCF trigger to the Community Earth System Model reduces convective overactivity in the model and improves the frequency of intense precipitation events. The use of the HCF as a convective trigger is still under active investigation, and strategies for including the effects of remote dynamical forcings and model sub-grid triggering are being explored.

Keywords

Convective trigger function CFSv2 CESM Convection initiation Convective inhibition 

Notes

Acknowledgements

This study was primarily supported by the National Monsoon Mission, Ministry of Earth Sciences, Government of India. Additional support comes from NSF (AGS-1338427), NOAA (NA14OAR4310160 and NA15NWS4680018), and NASA (NNX14AM19G). The radiosonde data were collected as part of DYNAMO, which was sponsored by NSF, NOAA, ONR, DOE, NASA, JAMSTEC, [Indian and Australian funding agencies]. The involvement of the NSF-sponsored National Center for Atmospheric Research (NCAR) Earth Observing Laboratory (EOL) is acknowledged. The data are archived at the DYNAMO Data Archive Center maintained by NCAR EOL.

References

  1. Abhik, S., P. Mukhopadhyay, R.P.M. Krishna, et al. 2016. Diagnosis of boreal summer intraseasonal oscillation in high resolution NCEP climate forecast system. Climate Dynamics 46: 3287–3303.  https://doi.org/10.1007/s00382-015-2769-9.CrossRefGoogle Scholar
  2. Arakawa, A., and W.H. Schubert. 1974. Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. Journal of the Atmospheric Sciences 31: 674–701.  https://doi.org/10.1175/1520-0469(1974)031%3c0674:IOACCE%3e2.0.CO;2.CrossRefGoogle Scholar
  3. Bechtold, P., M. Köhler, T. Jung, F. Doblas-Reyes, M. Leutbecher, M.J. Rodwell, F. Vitart, and G. Balsamo. 2008. Advances in simulating atmospheric variability with the ECMWF model: From synoptic to decadal time-scales. Quarterly Journal Royal Meteorological Society 134 (634): 1337–1351.  https://doi.org/10.1002/qj.289.CrossRefGoogle Scholar
  4. Bombardi, R.J., and L.M.V. Carvalho. 2009. IPCC global coupled model simulations of the South America monsoon system. Climate Dynamics 33: 893–916.  https://doi.org/10.1007/s00382-008-0488-1.CrossRefGoogle Scholar
  5. Bombardi, R.J., E.K. Schneider, L. Marx, et al. 2015. Improvements in the representation of the Indian summer monsoon in the NCEP climate forecast system version 2. Climate Dynamics 45: 2485–2498.  https://doi.org/10.1007/s00382-015-2484-6.CrossRefGoogle Scholar
  6. Bombardi, R.J., A.B. Tawfik, J.V. Manganello, et al. 2016. The heated condensation framework as a convective trigger in the NCEP climate forecast system version 2. Journal of Advances in Modeling Earth Systems 8: 1310–1329.  https://doi.org/10.1002/2016MS000668.CrossRefGoogle Scholar
  7. Bombardi, R.J., K.V. Pegion, J.L. Kinter, et al. 2017. Sub-seasonal predictability of the onset and demise of the rainy season over monsoonal regions. Frontiers of Earth Science.  https://doi.org/10.3389/feart.2017.00014.
  8. Chikira, M. 2010. A cumulus parameterization with state-dependent entrainment rate. Part II: Impact on climatology in a general circulation model. Journal of the Atmospheric Sciences 67 (7): 2194–2211.  https://doi.org/10.1175/2010jas3317.1.CrossRefGoogle Scholar
  9. Ciesielski, P.E., H. Yu, R.H. Johnson, et al. 2014. Quality-controlled upper-air sounding dataset for DYNAMO/CINDY/AMIE: Development and corrections. Journal of Atmospheric and Oceanic Technology 31: 741–764.  https://doi.org/10.1175/JTECH-D-13-00165.1.CrossRefGoogle Scholar
  10. Dai, A. 2006. Precipitation characteristics in eighteen coupled climate models. Journal of Climate 19: 4605–4630.  https://doi.org/10.1175/JCLI3884.1.CrossRefGoogle Scholar
  11. Donner, L.J., and V.T. Phillips. 2003. Boundary layer control on convective available potential energy: Implications for cumulus parameterization. Journal of Geophysical Research Atmospheres 108 (D22): 4701.  https://doi.org/10.1029/2003jd003773.
  12. Duffy, P.B., B. Govindasamy, J.P. Iorio, J. Milovich, K.R. Sperber, K.E. Taylor, M.F. Wehner, and S.L. Thompson. 2003. High-resolution simulations of global climate, Part 1: Present climate. Climate Dynamics 21 (5–6): 371–390.  https://doi.org/10.1007/s00382-003-0339-z.CrossRefGoogle Scholar
  13. Durre, I., R.S. Vose, and D.B. Wuertz. 2006. Overview of the integrated global radiosonde archive. Journal of Climate 19 (1): 53–68.  https://doi.org/10.1175/JCLI3594.1.CrossRefGoogle Scholar
  14. Fasullo, J., and P.J. Webster. 2002. Hydrological signatures relating the Asian summer monsoon and ENSO. Journal of Climate 15: 3082–3095.  https://doi.org/10.1175/1520-0442(2002)015%3c3082:HSRTAS%3e2.0.CO;2.CrossRefGoogle Scholar
  15. Ganai, M., P. Mukhopadhyay, R.P.M. Krishna, and M. Mahakur. 2015. The impact of revised simplified Arakawa-Schubert convection parameterization scheme in CFSv2 on the simulation of the Indian summer monsoon. Climate Dynamics 45: 881–902.  https://doi.org/10.1007/s00382-014-2320-4.CrossRefGoogle Scholar
  16. Gentine, P., A.A.M. Holtslag, F. D’Andrea, and M. Ek. 2013. Surface and atmospheric controls on the onset of moist convection over land. Journal of Hydrometeorology 14 (5): 1443–1462.  https://doi.org/10.1175/JHM-D-12-0137.1.CrossRefGoogle Scholar
  17. Goswami, B.B., M. Deshpande, P. Mukhopadhyay, et al. 2014. Simulation of monsoon intraseasonal variability in NCEP CFSv2 and its role on systematic bias. Climate Dynamics 43: 2725–2745.  https://doi.org/10.1007/s00382-014-2089-5.CrossRefGoogle Scholar
  18. Han, J., and H.-L. Pan. 2011. Revision of convection and vertical diffusion schemes in the NCEP global forecast system. Weather Forecast 26: 520–533.  https://doi.org/10.1175/WAF-D-10-05038.1.CrossRefGoogle Scholar
  19. Hong, S.-Y., and H.-L. Pan. 1998. Convective trigger function for a mass-flux cumulus parameterization scheme. Monthly Weather Review 126: 2599–2620.CrossRefGoogle Scholar
  20. Huffman, G.J., D.T. Bolvin, E.J. Nelkin, et al. 2007. The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. Journal of Hydrometeorology 8: 38–55.  https://doi.org/10.1175/JHM560.1.CrossRefGoogle Scholar
  21. Joseph, P.V., J.K. Eischeid, and R.J. Pyle. 1994. Interannual variability of the onset of the Indian summer monsoon and its association with atmospheric features, El Niño, and sea surface temperature anomalies. Journal of Climate 7: 81–105.  https://doi.org/10.1175/1520-0442(1994)007%3c0081:IVOTOO%3e2.0.CO;2.CrossRefGoogle Scholar
  22. Lee, M.-I., S.D. Schubert, M.J. Suarez, et al. 2008. Role of convection triggers in the simulation of the diurnal cycle of precipitation over the United States Great Plains in a general circulation model. Journal Geophysical Research 113: D02111.  https://doi.org/10.1029/2007JD008984.CrossRefGoogle Scholar
  23. Neale, R.B., J.H. Richter, and M. Jochum. 2008. The impact of convection on ENSO: From a delayed oscillator to a series of events. Journal of Climate 21 (22): 5904–5924.  https://doi.org/10.1175/2008JCLI2244.1.CrossRefGoogle Scholar
  24. Neale, R.B., et al. 2012. Description of the NCAR community atmosphere model (CAM 5.0). Technical Note NCAR/TN-486 + STR, National Center for Atmospheric Research, 2009–38451.Google Scholar
  25. Oleson, K.W., et al. 2013. Technical description of version 4.5 of the community land model (CLM). NCAR Technical Note, NCAR/TN-503 + STR.  https://doi.org/10.5065/d6rr1w7m.
  26. Oueslati, B., and G. Bellon. 2013. Convective entrainment and large-scale organization of tropical precipitation: Sensitivity of the CNRM-CM5 hierarchy of models. Journal of Climate 26 (9): 2931–2946.  https://doi.org/10.1175/JCLI-D-12-00314.1.CrossRefGoogle Scholar
  27. Pan, H.-L., and W.-S. Wu. 1995. Implementing a mass flux convective parameterization package for the NMC medium range forecast model. NMC Off Note 409, 40 pp. http://www.emc.ncep.no.
  28. Saha, S., S. Moorthi, X. Wu, et al. 2014a. The NCEP climate forecast system version 2. Journal of Climate 27: 2185–2208.  https://doi.org/10.1175/JCLI-D-12-00823.1.CrossRefGoogle Scholar
  29. Saha, S.K., S. Pokhrel, H.S. Chaudhari, et al. 2014b. Improved simulation of Indian summer monsoon in latest NCEP climate forecast system free run. International Journal of Climatology 34: 1628–1641.  https://doi.org/10.1002/joc.3791.CrossRefGoogle Scholar
  30. Santanello, J.A., C.D. Peters-Lidard, and S.V. Kumar. 2011. Diagnosing the sensitivity of local land-atmosphere coupling via the soil moisture-boundary layer interaction. Journal of Hydrometeorology 12 (5): 766–786.  https://doi.org/10.1175/JHM-D-10-05014.1.CrossRefGoogle Scholar
  31. Silva, G.A.M., L.M.M. Dutra, R.P. da Rocha, et al. 2014. Preliminary analysis on the global features of the NCEP CFSv2 seasonal hindcasts. Advances in Meteorology 2014: 1–21.  https://doi.org/10.1155/2014/695067.CrossRefGoogle Scholar
  32. Song, X., and G.J. Zhang. 2009. Convection parameterization, Tropical Pacific double ITCZ, and Upper-Ocean biases in the NCAR CCSM3. Part I: Climatology and atmospheric feedback. Journal of Climate 22 (16): 4299–4315.  https://doi.org/10.1175/2009jcli2642.1.CrossRefGoogle Scholar
  33. Suhas, E., and G.J. Zhang. 2014. Evaluation of trigger functions for convective parameterization schemes using observations. Journal of Climate 27: 7647–7666.  https://doi.org/10.1175/JCLI-D-13-00718.1.CrossRefGoogle Scholar
  34. Tawfik, A.B., and P. Dirmeyer. 2014. A process-based framework for quantifying the atmospheric preconditioning of surface-triggered convection. Geophysical Research Letters 41: 173–178.  https://doi.org/10.1002/2013GL057984.CrossRefGoogle Scholar
  35. Tawfik, A.B., P.A. Dirmeyer, and J.A. Santanello. 2015a. The heated condensation framework. Part II: Climatological behavior of convective initiation and land-atmosphere coupling over the conterminous United States. Journal of Hydrometeorology 16: 1946–1961.  https://doi.org/10.1175/JHM-D-14-0118.1.CrossRefGoogle Scholar
  36. Tawfik, A.B., P.A. Dirmeyer, and J.A. Santanello. 2015b. The heated condensation framework. Part I: Description and Southern Great Plains case study. Journal of Hydrometeorology 16: 1929–1945.  https://doi.org/10.1175/JHM-D-14-0117.1.CrossRefGoogle Scholar
  37. Tawfik, A.B., D.M. Lawrence, and P.A. Dirmeyer. 2017. Representing subgrid convective initiation in the community earth system model. Journal of Advances in Modeling Earth Systems 9.  https://doi.org/10.1002/2016ms000866.CrossRefGoogle Scholar
  38. Wang, Y., L. Zhou, and K. Hamilton. 2007. Effect of convective entrainment/detrainment on the simulation of the tropical precipitation diurnal cycle. Monthly Weather Review 135 (2): 567–585.  https://doi.org/10.1175/MWR3308.1.CrossRefGoogle Scholar
  39. Weckwerth, T.M., D.B. Parsons, S.E. Koch, et al. 2004. An overview of the International H2O Project (IHOP_2002) and some preliminary highlights. Bulletin of the American Meteorological Society 85: 253–277.  https://doi.org/10.1175/BAMS-85-2-253.CrossRefGoogle Scholar
  40. Xie, S., and M. Zhang. 2000. Impact of the convection triggering function on single-column model simulations. Journal of Geophysical Research: Atmospheres 105 (D11): 14983–14996.  https://doi.org/10.1029/2000JD900170.CrossRefGoogle Scholar
  41. Zarzycki, C.M., M.N. Levy, C. Jablonowski, J.R. Overfelt, M.A. Taylor, and P.A. Ullrich. 2014. Aquaplanet experiments using CAM’s variable-resolution dynamical core. Journal of Climate 27 (14): 5481–5503.  https://doi.org/10.1175/JCLI-D-14-00004.1.CrossRefGoogle Scholar
  42. Zhang, G.J. 2002. Convective quasi-equilibrium in midlatitude continental environment and its effect on convective parameterization. Journal of Geophysical Research: Atmospheres 107 (D14): ACL 12-1.  https://doi.org/10.1029/2001jd001005.
  43. Zhang, G.J., and N.A. McFarlane. 1995. Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian climate centre general circulation model. Atmosphere-Ocean 33 (3): 407–446.  https://doi.org/10.1080/07055900.1995.9649539.CrossRefGoogle Scholar
  44. Zhu, J., and J. Shukla. 2013. The role of air-sea coupling in seasonal prediction of Asia-Pacific summer monsoon rainfall. Journal of Climate 26: 5689–5697.  https://doi.org/10.1175/JCLI-D-13-00190.1.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Rodrigo J. Bombardi
    • 1
    Email author
  • Ahmed B. Tawfik
    • 2
  • Lawrence Marx
    • 1
  • Paul A. Dirmeyer
    • 1
  • James L. Kinter III
    • 1
  1. 1.Department of Atmospheric, Oceanic, and Earth SciencesCenter for Ocean-Land-Atmosphere Studies, College of Science, George Mason UniversityFairfaxUSA
  2. 2.National Center for Atmospheric ResearchBoulderUSA

Personalised recommendations