Land Surface Processes

  • Dev NiyogiEmail author
Part of the Springer Atmospheric Sciences book series (SPRINGERATMO)


The role of land surface processes on monsoonal mesoscale convection and rainfall is discussed. The chapter initially provides a foundational framework for the land surface and land–atmosphere coupling processes. This is followed by a discussion regarding the role and the need for improving land feedbacks within multiscale models and processes. In particular, the role of land surface models in providing surface boundary conditions within numerical weather prediction models is highlighted. Building on the observational understanding related to the role of land surface processes and changes on the regional weather and climate, the land surface feedbacks over the monsoon region are summarized. The chapter concludes by highlighting the need for work on three challenges to advance the high-impact monsoon weather prediction. These challenges include (i) more realistic inclusion of land processes and model parameterizations that account for the land–atmosphere feedbacks; (ii) development of datasets including data fusion products that can be used for input conditions including initialization of the land models as well as validation of newer schemes; and (iii) more coordinated model calibration/validation efforts with focus on the monsoon region by community of users (such as Indian land model intercomparison project—using both offline and coupled studies). Studies are especially needed for improving the representation of human-managed landscapes such as urban areas and agricultural croplands in the monsoon region. A more concerted effort linking land model with boundary layer coupling, and convection / microphysical parameterizations is needed as they intimately impact the performance of the coupled numerical weather prediction system.


Land atmosphere interactions Surface energy balance Mesoscale convection Heavy rainfall Land use land cover change Soil moisture Atmospheric boundary layer 



The work in this chapter benefitted from a National Monsoon Mission project Earth System Science Organization, Ministry of Earth Sciences, Government of India (Grant no./Project no MM/SERP/CNRS/2013/INT-10/002), the U.S. National Science Foundation (NSF CAREER grant AGS-0847472 (Ming Cai), NSF CDSE-01250232, NSF AGS-1522492 (Chungu Lu), and USDA Hatch grant 1007699.


  1. Barlage, M., M. Tewari, F. Chen, G. Miguez-Macho, Z.L. Yang, and G.Y. Niu. 2015. The effect of groundwater interaction in North American regional climate simulations with WRF/Noah-MP. Climatic Change 129 (3–4): 485–498.CrossRefGoogle Scholar
  2. Bozeman, Monica Laureano, Dev Niyogi, S. Gopalakrishnan, Frank D. Marks, Xuejin Zhang, and Vijay Tallapragada. 2012. An HWRF-based ensemble assessment of the land surface feedback on the post-landfall intensification of Tropical Storm Fay (2008). Natural Hazards 63 (3): 1543–1571.Google Scholar
  3. Chang, Hsin‐I., Dev Niyogi, Anil Kumar, C.M. Kishtawal, Jimy Dudhia, Fei Chen, U.C. Mohanty, and Marshall Shepherd. 2009. Possible relation between land surface feedback and the post‐landfall structure of monsoon depressions. Geophysical Research Letters 36 (15).Google Scholar
  4. Changnon Jr., Stanley A. 1980. More on the La Porte anomaly: A review. Bulletin of the American Meteorological Society 61 (7): 702–711.CrossRefGoogle Scholar
  5. Changnon Jr., Stanley A., Floyd A. Huff, and Richard G. Semonin. 1971. METROMEX: An investigation of inadvertent weather modification. Bulletin of the American Meteorological Society 52 (10): 958–968.CrossRefGoogle Scholar
  6. Ching, Jason, G. Mills, B. Bechtel, L. See, J. Feddema, X. Wang, C. Ren, et al. 2018. World urban database and access portal tools (WUDAPT), an urban weather, climate and environmental modeling infrastructure for the anthropocene. Bulletin of the American Meteorological Society 2018.Google Scholar
  7. Collatz, G. James, J. Timothy Ball, Cyril Grivet, and Joseph A. Berry. 1991. Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: A model that includes a laminar boundary layer. Agricultural and Forest Meteorology 54 (2–4): 107–136.CrossRefGoogle Scholar
  8. Fall, Souleymane, Dev Niyogi, Alexander Gluhovsky, Roger A. Pielke, Eugenia Kalnay, and Gilbert Rochon. 2010. Impacts of land use land cover on temperature trends over the continental United States: assessment using the North American Regional Reanalysis. International Journal of Climatology 30 (13): 1980–1993.CrossRefGoogle Scholar
  9. Gadgil, Sulochana. 2003. The Indian monsoon and its variability. Annual Review of Earth and Planetary Sciences 31 (1): 429–467.CrossRefGoogle Scholar
  10. Goswami, Bhupendra Nath, V. Venugopal, D. Sengupta, M.S. Madhusoodanan, and Prince K. Xavier. 2006. Increasing trend of extreme rain events over India in a warming environment. Science 314 (5804): 1442–1445.CrossRefGoogle Scholar
  11. Guo, Zhichang, Paul A. Dirmeyer, Randal D. Koster, Y.C. Sud, Gordon Bonan, Keith W. Oleson, Edmond Chan, et al. 2006. GLACE: The global land–atmosphere coupling experiment. Part II: Analysis. Journal of Hydrometeorology 7 (4): 611–625.CrossRefGoogle Scholar
  12. Halder, Subhadeep, Subodh K. Saha, Paul A. Dirmeyer, Thomas N. Chase, and Bhupendra Nath Goswami. 2016. Investigating the impact of land-use land-cover change on Indian summer monsoon daily rainfall and temperature during 1951–2005 using a regional climate model. Hydrology and Earth System Sciences 20: 1765–1784.CrossRefGoogle Scholar
  13. Holt, Teddy R., Dev Niyogi, Fei Chen, Kevin Manning, Margaret A. LeMone, and Aneela Qureshi. 2006. Effect of land–atmosphere interactions on the IHOP 24–25 May 2002 convection case. Monthly Weather Review 134 (1): 113–133.CrossRefGoogle Scholar
  14. Kellner, Olivia, Dev Niyogi, Ming Lei, and Anil Kumar. 2012. The role of anomalous soil moisture on the inland reintensification of Tropical Storm Erin (2007). Natural Hazards 63 (3): 1573–1600.CrossRefGoogle Scholar
  15. Kishtawal, Chandra M., Dev Niyogi, Mukul Tewari, Roger A. Pielke, and J. Marshall Shepherd. 2010. Urbanization signature in the observed heavy rainfall climatology over India. International Journal of Climatology 30 (13): 1908–1916.CrossRefGoogle Scholar
  16. Kishtawal, Chandra M., Dev Niyogi, Anil Kumar, Monica Laureano Bozeman, and Olivia Kellner. 2012. Sensitivity of inland decay of North Atlantic tropical cyclones to soil parameters. Natural Hazards 63 (3): 1527–1542.CrossRefGoogle Scholar
  17. Koster, Randal D., Paul A. Dirmeyer, Zhichang Guo, Gordon Bonan, Edmond Chan, Peter Cox, C.T. Gordon, et al. 2004. Regions of strong coupling between soil moisture and precipitation. Science 305 (5687): 1138–1140.CrossRefGoogle Scholar
  18. Krishnamurti, T.N., Anu Simon, Aype Thomas, Akhilesh Mishra, Dev Sikka, Dev Niyogi, Arindam Chakraborty, and Li Li. 2012. Modeling of forecast sensitivity on the march of monsoon isochrones from Kerala to New Delhi: the first 25 days. Journal of the Atmospheric Sciences 69 (8): 2465–2487.CrossRefGoogle Scholar
  19. Kumar, Anil, Fei Chen, Michael Barlage, Michael B. Ek, and Dev Niyogi. 2014. Assessing impacts of integrating MODIS vegetation data in the weather research and forecasting (WRF) model coupled to two different canopy-resistance approaches. Journal of Applied Meteorology and Climatology 53 (6): 1362–1380.CrossRefGoogle Scholar
  20. Lawrence, David M., Peter E. Thornton, Keith W. Oleson, and Gordon B. Bonan. 2007. The partitioning of evapotranspiration into transpiration, soil evaporation, and canopy evaporation in a GCM: Impacts on land–atmosphere interaction. Journal of Hydrometeorology 8 (4): 862–880.CrossRefGoogle Scholar
  21. Lee, Eungul, Thomas N. Chase, Balaji Rajagopalan, Roger G. Barry, Trent W. Biggs, and Peter J. Lawrence. 2009. Effects of irrigation and vegetation activity on early Indian summer monsoon variability. International Journal of Climatology 29 (4): 573–581.CrossRefGoogle Scholar
  22. Liu, Yaling, Zhihua Pan, Qianlai Zhuang, Diego G. Miralles, Adriaan J. Teuling, Tonglin Zhang, Pingli An, et al. 2015. Agriculture intensifies soil moisture decline in Northern China. Scientific Reports 5: 11261. Google Scholar
  23. Liu, Xing, Fei Chen, Michael Barlage, Guangsheng Zhou, and Dev Niyogi. 2016. Noah‐MP‐Crop: Introducing dynamic crop growth in the Noah‐MP land surface model. Journal of Geophysical Research: Atmospheres 121 (23).Google Scholar
  24. Nayak, H.P., K.K. Osuri, P. Sinha, R. Nadimpalli, U.C. Mohanty, F. Chen, M. Rajeevan, and D. Niyogi. 2018. High-resolution gridded soil moisture and soil temperature datasets for the Indian monsoon region. Scientific Data 5: 180264.CrossRefGoogle Scholar
  25. Niu, Guo‐Yue, Zong‐Liang Yang, Kenneth E. Mitchell, Fei Chen, Michael B. Ek, Michael Barlage, Anil Kumar, et al. 2011. The community Noah land surface model with multiparameterization options (Noah‐MP): 1. Model description and evaluation with local‐scale measurements. Journal of Geophysical Research: Atmospheres 116 (D12).Google Scholar
  26. Niyogi, Dev, Kiran Alapaty, Sethu Raman, and Fei Chen. 2009. Development and evaluation of a coupled photosynthesis-based gas exchange evapotranspiration model (GEM) for mesoscale weather forecasting applications. Journal of Applied Meteorology and Climatology 48 (2): 349–368.CrossRefGoogle Scholar
  27. Niyogi, Dev, Chandra Kishtawal, Shivam Tripathi, and Rao S. Govindaraju. 2010. Observational evidence that agricultural intensification and land use change may be reducing the Indian summer monsoon rainfall. Water Resources Research 46 (3).Google Scholar
  28. Niyogi, Dev, Patrick Pyle, Ming Lei, S. Pal Arya, Chandra M. Kishtawal, Marshall Shepherd, Fei Chen, and Brian Wolfe. 2011. Urban modification of thunderstorms: An observational storm climatology and model case study for the Indianapolis urban region. Journal of Applied Meteorology and Climatology 50 (5): 1129–1144.CrossRefGoogle Scholar
  29. Niyogi, Dev, Subashini Subramanian, U.C. Mohanty, C.M. Kishtawal, Subimal Ghosh, U.S. Nair, M. Ek, and M. Rajeevan. 2018. The impact of land cover and land use change on the Indian monsoon region hydroclimate. In Land-atmospheric research applications in South and Southeast Asia, 553–575. Cham: Springer.Google Scholar
  30. Noilhan, J., and S. Planton. 1989. A simple parameterization of land surface processes for meteorological models. Monthly Weather Review 117 (3): 536–549.CrossRefGoogle Scholar
  31. Oke, T.R. 1973. City size and the urban heat island. Atmospheric Environment 7 (8): 769–779 (1967).CrossRefGoogle Scholar
  32. Osuri, Krishna K., U.C. Mohanty, A. Routray, and M. Mohapatra. 2012. The impact of satellite-derived wind data assimilation on track, intensity and structure of tropical cyclones over the North Indian Ocean. International Journal of Remote Sensing 33 (5): 1627–1652.CrossRefGoogle Scholar
  33. Osuri, K.K., R. Nadimpalli, U.C. Mohanty, F. Chen, M. Rajeevan, and Dev Niyogi. 2017. Improved prediction of severe thunderstorms over the Indian Monsoon region using high-resolution soil moisture and temperature initialization. Scientific Reports 7: 41377.Google Scholar
  34. Pielke, Roger A., et al. 2002. The influence of land-use change and landscape dynamics on the climate system: Relevance to climate-change policy beyond the radiative effect of greenhouse gases. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 360 (1797): 1705–1719.CrossRefGoogle Scholar
  35. Pielke, Roger A., Andy Pitman, Dev Niyogi, Rezaul Mahmood, Clive McAlpine, Faisal Hossain, Kees Klein Goldewijk, et al. 2011. Land use/land cover changes and climate: Modeling analysis and observational evidence. Wiley Interdisciplinary Reviews: Climate Change 2 (6): 828–850.Google Scholar
  36. Pitman, A.J. 2003. The evolution of, and revolution in, land surface schemes designed for climate models. International Journal of Climatology 23 (5): 479–510.CrossRefGoogle Scholar
  37. Rodell, Matthew, Isabella Velicogna, and James S. Famiglietti. 2009. Satellite-based estimates of groundwater depletion in India. Nature 460 (7258): 999.CrossRefGoogle Scholar
  38. Rodell, M., J.S. Famiglietti, D.N. Wiese, J.T. Reager, H.K. Beaudoing, F.W. Landerer, and M.-H. Lo. 2018. Emerging trends in global freshwater availability. Nature 1.Google Scholar
  39. Roxy, Mathew Koll, Kapoor Ritika, Pascal Terray, Raghu Murtugudde, Karumuri Ashok, and B.N. Goswami. 2015. Drying of Indian subcontinent by rapid Indian Ocean warming and a weakening land-sea thermal gradient. Nature Communications 6: 7423.Google Scholar
  40. Roy, Shouraseni Sen, Rezaul Mahmood, Dev Niyogi, Ming Lei, Stuart A. Foster, Kenneth G. Hubbard, Ellen Douglas, and Roger Pielke. 2007. Impacts of the agricultural Green Revolution-induced land use changes on air temperatures in India. Journal of Geophysical Research: Atmospheres 112 (D21).Google Scholar
  41. Saha, Subodh K., Subhadeep Halder, K. Krishna Kumar, and B.N. Goswami. 2011. Pre-onset land surface processes and ‘internal’ interannual variabilities of the Indian summer monsoon. Climate Dynamics 36 (11–12): 2077–2089.CrossRefGoogle Scholar
  42. Santamouris, M. 2015. Analyzing the heat island magnitude and characteristics in one hundred Asian and Australian cities and regions. Science of the Total Environment 512: 582–598.CrossRefGoogle Scholar
  43. Schmid, Paul E., and Dev Niyogi. 2013. Impact of city size on precipitation-modifying potential. Geophysical Research Letters 40 (19): 5263–5267.CrossRefGoogle Scholar
  44. Schmid, Paul E., and Dev Niyogi. 2017. Modeling urban precipitation modification by spatially heterogeneous aerosols. Journal of Applied Meteorology and Climatology 56 (8): 2141–2153.CrossRefGoogle Scholar
  45. Sellers, Piers J., Compton J. Tucker, G. James Collatz, Sietse O. Los, Christopher O. Justice, Donald A. Dazlich, and David A. Randall. 1996. A revised land surface parameterization (SiB2) for atmospheric GCMs. Part II: The generation of global fields of terrestrial biophysical parameters from satellite data. Journal of Climate 9 (4): 706–737.CrossRefGoogle Scholar
  46. Shastri, Hiteshri, Supantha Paul, Subimal Ghosh, and Subhankar Karmakar. 2015. Impacts of urbanization on Indian summer monsoon rainfall extremes. Journal of Geophysical Research: Atmospheres 120 (2): 496–516.Google Scholar
  47. Unnikrishnan, C.K., M. Rajeevan, S. Vijaya Bhaskara Rao, and Manoj Kumar. 2013. Development of a high resolution land surface dataset for the South Asian monsoon region. Current Science 105 (9): 1235–1246.Google Scholar
  48. Webster, Peter J., Vo Oo Magana, T.N. Palmer, J. Shukla, R.A. Tomas, M.U. Yanai, and T. Yasunari. 1998. Monsoons: Processes, predictability, and the prospects for prediction. Journal of Geophysical Research: Oceans 103 (C7): 14451–14510.CrossRefGoogle Scholar
  49. Yang, Long, Fuqiang Tian, James A. Smith, and Hu Heping. 2014. Urban signatures in the spatial clustering of summer heavy rainfall events over the Beijing metropolitan region. Journal of Geophysical Research: Atmospheres 119 (3): 1203–1217.Google Scholar
  50. Zhou, Liming, Robert E. Dickinson, Yuhong Tian, Jingyun Fang, Qingxiang Li, Robert K. Kaufmann, Compton J. Tucker, and Ranga B. Myneni. 2004. Evidence for a significant urbanization effect on climate in China. Proceedings of the National Academy of Sciences of the United States of America 101 (26): 9540–9544.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Purdue UniversityWest LafayetteUSA

Personalised recommendations