Advertisement

Microphysics in Goddard Multi-scale Modeling Systems: A Review

  • W.-K. TaoEmail author
  • J. Chern
  • T. Iguchi
  • S. Lang
  • M.-I. Lee
  • X. Li
  • A. Loftus
  • T. Matsui
  • K. Mohr
  • S. Nicholls
  • C. Peters-Lidard
  • D. J. Posselt
  • G. Skofronick-Jackson
Chapter
Part of the Springer Atmospheric Sciences book series (SPRINGERATMO)

Abstract

Advances in computing power allow atmospheric prediction and general circulation models to be run at progressively finer scales of resolution, using increasingly more sophisticated physical parameterizations. The representation of cloud microphysical processes is one of the key components of these models. In addition, over the past decade, both research and operational numerical weather prediction models have started using more complex microphysical schemes that were originally developed for high-resolution cloud-resolving models (CRMs). In the paper, we describe different microphysics schemes that are used in the Goddard multi-scale modeling system, the three major models of which are the Goddard Cumulus Ensemble (GCE), NASA-Unified Weather Research and Forecasting (NU-WRF), and Multi-scale Modeling Framework (MMF) models. The microphysics schemes are the Goddard three class ice (3ICE) and four class ice (4ICE), Morrison two moment (2M), Colorado State University Regional Atmospheric Modeling System (RAMS) 2M five class ice, and spectral bin microphysics schemes. The performance of these schemes is examined and compared with radar and satellite observations. In addition, the intercomparison of different microphysics schemes is conducted. Current and future observations needed for microphysics schemes evaluation as well as major characteristics of current microphysics are discussed.

Keywords

Microphysics Cloud-Resolving Model Mesoscale Convective System 

Notes

Acknowledgements

The authors appreciate the inspiring and enthusiastic support by Dr. Joanne Simpson for many years. The author is grateful to Dr. R. Kakar and Dr. D. Consitine at NASA headquarters for their continuous support of Goddard Cumulus Ensemble (GCE), NU-WRF, and GMMF model improvements and applications. The NASA PMM and MAP mainly support the work. Acknowledgment is also made to Dr. T. Lee at NASA headquarters, the NASA Goddard Space Flight Center and the NASA Ames Research Center for computer time used in this research.

References

  1. Abdul-Razzak, H., and S.J. Ghan. 2000. A parameterization of aerosol activation: 2. Multiple aerosol types. Journal of Geophysical Research 105: 6837–6844.CrossRefGoogle Scholar
  2. Adams-Selin, R.D., S.C. van den Heever, and R.H. Johnson. 2013. Quantitative evaluation of bow echo microphysical sensitivity. Weather and Forecasting 28: 1188–1209.CrossRefGoogle Scholar
  3. Andreae, M.O., and D. Rosenfeld. 2008. Aerosol–cloud–precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth-Science Reviews 89: 13–41.  https://doi.org/10.1016/j.earscirev.2008.03.001.CrossRefGoogle Scholar
  4. Baker, R.D., B.H. Lynn, A. Boone, W.-K. Tao, and J. Simpson. 2001. The influence of soil moisture, coastline curvature, and the land-breeze circulation on sea-breeze initiated precipitation. Journal of Hydrometeorology 2: 193–211.CrossRefGoogle Scholar
  5. Bassill, N.P. 2014. Accuracy of early GFS and ECMWF Sandy (2012) track forecasts: Evidence for a dependence on cumulus parameterization. Geophysical Reseach Letters 41: 3274–3281.  https://doi.org/10.1002/2014gl059839.CrossRefGoogle Scholar
  6. Bigg, E.K. 1953. The formation of atmospheric ice crystals by the freezing of droplets. Quarterly Journal of the Royal Meteorological Society 79: 510–519.  https://doi.org/10.1002/qj.49707934207.CrossRefGoogle Scholar
  7. Bonan, G.B., K.W. Oleson, M. Vertenstein, S. Levis, X.B. Zeng, Y.J. Dai, R.E. Dickinson, and Z.L. Yang. 2002. The land surface climatology of the community land model coupled to the NCAR community climate model. Journal of Climate 15: 3123–3149.CrossRefGoogle Scholar
  8. Bosilovich, M.G., and Co-authors. 2015. MERRA-2: Initial Evaluation of the Climate, NASA/TM-2015-104606/Vol. 43. 145 pp.Google Scholar
  9. Bryan, G.H., and H. Morrison. 2012. Sensitivity of a simulated squall line to horizontal resolution and parameterization of microphysics. Monthly Weather Review 140: 202–225.  https://doi.org/10.1175/mwr-d-11-00046.1.CrossRefGoogle Scholar
  10. Bukowski, J., D.J. Posselt, J.S. Reid, and S.A. Atwood. 2017. Modes of thermodynamic and wind variability over the Maritime Continent. Atmospheric Chemistry and Physics 17: 4611–4626.  https://doi.org/10.5194/acp-17-4611-2017.CrossRefGoogle Scholar
  11. Chern, J.-D., W.-K. Tao, S.E. Lang, T. Matsui, J.-L.F. Li, K.I. Mohr, G.M. Skofronick-Jackson, and C.D. Peters-Lidard. 2016. Performance of the Goddard multiscale modeling framework with Goddard ice microphysical schemes. Journal of Advances in Modeling Earth Systems 7.  https://doi.org/10.1002/2015ms000469.CrossRefGoogle Scholar
  12. Chin, M., R.B. Rood, S.-J. Lin, J.-F. Müller, and A.M. Thompson. 2000. Atmospheric sulfur cycle simulated in the global model GOCART: Model description and global properties. Journal Geophysical Research 105 (D20): 24671–24687.  https://doi.org/10.1029/2000jd900384.CrossRefGoogle Scholar
  13. Chou, M.-D., K.-T. Lee, S.-C. Tsay, and Q. Fu. 1999. Parameterization for cloud longwave scattering for use in atmospheric models. Journal of Climate 12: 159–169.CrossRefGoogle Scholar
  14. Chou M.-D., and M.J. Suarez. 1999. A solar radiation parameterization for atmospheric studies. NASA Technical Report NASA/TM-1999-10460, vol. 15, 38 pp.Google Scholar
  15. Chou, M.-D., M. J. Suarez, X.-Z. Liang. M.-H. Yan. 2001. A thermal infrared radiation parameterization for atmospheric studies. NASA/TM-2001-104606, vol. 19, 55 pp.Google Scholar
  16. Cotton, W.R., R.D. Alexander, R. Hertenstein, R.L. Walko, R.L. McAnelly, and M. Nicholls. 1995. Cloud venting—A review and some new global annual estimates. Earth Science Reviews 39: 169–206.CrossRefGoogle Scholar
  17. Cotton, W.R., and Coauthors. 2003. RAMS 2001: Current status and future directions, Meteorology and Atmospheric Physics 82: 5–29.CrossRefGoogle Scholar
  18. DeMott, P.J., A.J. Prenni, X. Liu, M.D. Petters, C.H. Twohy, M.S. Richardson, T. Eidhammer, S.M. Kreidenweis, and D.C. Rogers. 2010. Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proceedings of the National Academy of Sciences of the United States of America 107 (25): 11217–11222.  https://doi.org/10.1073/pnas.0910818107.CrossRefGoogle Scholar
  19. Deng, M., G.G. Mace, Z. Wang, and H. Okamoto. 2010. Tropical composition, cloud and climate coupling experiment validation for cirrus cloud profiling retrieval using CloudSat radar and CALIPSO lidar. Journal of Geophysical Research 115: D00J15.  https://doi.org/10.1029/2009jd013104.
  20. Feingold, G., R.L. Walko, B. Stevens, and W.R. Cotton. 1998. Simulations of marine stratocumulus using a new microphysical parameterization scheme. Atmospheric Research 47–48: 505–528.CrossRefGoogle Scholar
  21. Ferrier, B.S., J. Simpson, and W.-K. Tao. 1996. Factors responsible for precipitation efficiencies in midlatitude and tropical squall simulations. Monthly Weather Review 124: 2100–2125.CrossRefGoogle Scholar
  22. Ferrier, B.S., W.-K. Tao, and J. Simpson. 1995. A double-moment multiple-phase four-class bulk ice scheme. Part II: Simulations of convective storms in different large-scale environments and comparisons with other bulk parameterizations. Journal of the Atmospheric Sciences 52: 1001–1033.CrossRefGoogle Scholar
  23. Fridlind, A.M., X. Li, D. Wu, M. van Lier-Walqui, A.S. Ackerman, W.-K. Tao, G.M. McFarquha, W. Wu, X. Dong, J. Wang, A. Ryzhkov, P. Zhang, M.R. Poellot, A. Neumann, and J.M. Tomlinson. 2017. Derivation of aerosol profiles for MC3E convective studies and use in simulations of the 20 May squall line case. Atmospheric Chemistry and Physics 17: 5947–5972.  https://doi.org/10.5194/acp-17-5947-2017.CrossRefGoogle Scholar
  24. Gray, W.M., and R.W. Jacobsen. 1977. Diurnal variation of deep cumulus convection. Monthly Weather Review 105: 1171–1188.CrossRefGoogle Scholar
  25. Hagos, S., Z. Feng, C.D. Burleyson, K.-S.S. Lim, C.N. Long, D. Wu, and G. Thompson. 2014. Evaluation of convection-permitting model simulations of cloud populations associated with the Madden-Julian Oscillation using data collected during the AMIE/DYNAMO field campaign. Journal Geophysical Research 119: 12052–12068.Google Scholar
  26. Hallett, J., and S.C. Mossop. 1974. Production of secondary ice crystals during the riming process. Nature 249: 26–28.CrossRefGoogle Scholar
  27. Hong, S.-Y., and J.-O.J. Lim. 2006. The WRF single-moment 6-class microphysics scheme (WSM6). Journal of the Korean Meteorological Society 42: 129–151.Google Scholar
  28. Houze Jr., R.A. 1997. Stratiform precipitation in regions of convection: A meteorological paradox? Bulletin of the American Meteorological Society 78: 2179–2196.CrossRefGoogle Scholar
  29. Iguchi, T., T. Matsui, J.J. Shi, W.-K. Tao, A.P. Khain, A. Hou, R. Cifelli, A. Heymsfield, and A. Tokay. 2012a. Numerical analysis using WRF-SBM for the cloud microphysical structures in the C3VP field campaign: Impacts of supercooled droplets and resultant riming on snow microphysics. Journal Geophysical Research 117: D23206.  https://doi.org/10.1029/2012jd018101.CrossRefGoogle Scholar
  30. Iguchi, T., T. Matsui, W.-K. Tao, A.P. Khain, V.T.J. Phillips, C. Kidd, T. L’Ecuyer, S.A. Braun, and A. Hou. 2014. WRF-SBM simulations of melting layer structure in mixed-phase precipitation events observed during LPVEx. Journal of Applied Meteorology and Climatology 53: 2710–2731.  https://doi.org/10.1175/jamc-d-13-0334.1.CrossRefGoogle Scholar
  31. Iguchi, T., T. Matsui, A. Tokay, P. Kollias, and W.-K. Tao. 2012b. Two distinct modes in one-day rainfall event during MC3E field campaign: Analyses of disdrometer observations and WRF-SBM simulation. Geophysical Reseach Letters 39: L24805.  https://doi.org/10.1029/2012gl053329.CrossRefGoogle Scholar
  32. Johnson, R.H., and P.J. Hamilton. 1988. The relationship of surface pressure features to the precipitation and air flow structure of an intense midlatitude squall line. Monthly Weather Review 116: 1444–1472.CrossRefGoogle Scholar
  33. Johnson, D.E., W.-K. Tao, J. Simpson, and C.-H. Sui. 2002. A study of the response of deep tropical clouds to large-scale thermodynamic forcings. Part I: Modeling strategies and simulations of TOGA COARE convective systems. Journal of the Atmospheric Sciences 59: 3492–3518.CrossRefGoogle Scholar
  34. Kain, J.S., and Coauthors. 2008. Some practical considerations regarding horizontal resolution in the first generation of operational convection-allowing NWP. Weather and Forecasting 23: 931–952.CrossRefGoogle Scholar
  35. Kain, J.S., and Coauthors. 2013. A feasibility study for probabilistic convection initiation forecasts based on explicit numerical guidance. Bulletin of the American Meteorological Society 94: 1213–1225.  https://doi.org/10.1175/bams-d-11-00264.1.CrossRefGoogle Scholar
  36. Kain, J.S., S.J. Weiss, J.J. Levit, M.E. Baldwin, and D.R. Bright. 2006. Examination of convection-allowing configurations of the WRF model for the prediction of severe convective weather: The SPC/NSSL Spring Program 2004. Weather and Forecasting 21: 167–181.CrossRefGoogle Scholar
  37. Khain, A., M. Ovtchinnikov, M. Pinsky, A. Pokrovsky, and H. Krugliak. 2000. Notes on the state-of-the-art numerical modeling of cloud microphysics. Atmospheric Research 55: 159–224.CrossRefGoogle Scholar
  38. Khain, A.P., V. Phillips, N. Benmoshe, and A. Pokrovsky. 2012. The role of small soluble aerosols in the microphysics of deep maritime clouds. Journal of the Atmospheric Sciences 69: 2787–2807. https://doi.org/10.1175/2011JAS3649.1.CrossRefGoogle Scholar
  39. Khain, A., A. Pokrovsky, M. Pinsky, A. Seifert, and V. Phillips. 2004. Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model. Part I: Model description and possible applications. Journal of the Atmospheric Sciences 61: 2963–2982.CrossRefGoogle Scholar
  40. Khain, A., D. Rosenfeld, A. Pokrovsky, U. Blahak, and A. Ryzhkov. 2011. The role of CCN in precipitation and hail in a mid-latitude storm as seen in simulations using a spectral (bin) microphysics model in a 2D dynamic frame. Atmospheric Research 99: 129–146. https://doi.org/10.1016/j.atmosres.2010.09.015.CrossRefGoogle Scholar
  41. Kidd, C., T. Matsui, J. Chern, K.I. Mohr, C. Kummerow, and D. Randall. 2016. Global precipitation estimates from cross-track passive microwave observations using a physically-based retrieval scheme. Journal of Hydrometeorology 17: 383–400.  https://doi.org/10.1175/jhm-d-15-0051.1.CrossRefGoogle Scholar
  42. Kiehl, J.T., J.J. Hack, and J.W. Hurrell. 1998. The energy budget of the NCAR Community Model: CCM3. Journal of Climate 11: 1151–1178.CrossRefGoogle Scholar
  43. Kim, D., M. Chin, E.M. Kemp, Z. Tao, C.D. Peters-Lidard, P. Ginoux. 2017. Development of high-resolution dynamic dust source function—A case study with a strong dust storm in a regional model. Atmospheric Environment 159: 11–25. https://doi.org/10.1016/j.atmosenv.2017.03.045.CrossRefGoogle Scholar
  44. Klemp, J.B., and R.B. Wilhelmson. 1978. The simulation of three dimensional convective storm dynamics. Journal of the Atmospheric Sciences 35: 1070–1096.CrossRefGoogle Scholar
  45. Kraus, E.B. 1963. The diurnal precipitation change over the sea. Journal of the Atmospheric Sciences 20: 546–551.CrossRefGoogle Scholar
  46. Kumar, S.V., C.D. Peters-Lidard, Y. Tian, P.R. Houser, J. Geiger, S. Olden, L. Lighty, J.L. Eastman, B. Doty, P. Dirmeyer, J. Adams, K. Mitchell, E.F. Wood, and J. Sheffield. 2006. Land information system—An interoperable framework for high resolution land surface modeling. Environmental Modelling and Software 21: 1402–1415.CrossRefGoogle Scholar
  47. Lang, S.E., and W.-K. Tao. 2018. The next-generation Goddard convective-stratiform heating algorithm: New tropical and warm season retrievals for GPM. Journal of Climate 31: 5997–6026. https://doi.org/10.1175/JCLI-D-17-0224.1.CrossRefGoogle Scholar
  48. Lang, S.E., W.-K. Tao, J.-D. Chern, D. Wu, and X. Li. 2014. Benefits of a fourth ice class in the simulated radar reflectivities of convective systems using a bulk microphysics scheme. Journal of the Atmospheric Sciences 71 (10): 3583–3612. https://doi.org/10.1175/jas-d-13-0330.1.CrossRefGoogle Scholar
  49. Lang, S., W.-K. Tao, J. Simpson, and B. Ferrier. 2003. Modeling of convective-stratiform precipitation processes: Sensitivity to partitioning methods. Journal of Applied Meteorology 42: 505–527.CrossRefGoogle Scholar
  50. Lang, S., W.-K. Tao, J. Simpson, and B. Ferrier. 2004. Comment on “Modeling of convective-stratiform precipitation processes: Sensitivity to partitioning methods”. Journal of Applied Meteorology 43: 962–965.Google Scholar
  51. Lang, S., W.-K. Tao, X. Zeng, and Y. Li. 2011. Reducing the biases in simulated radar reflectivities from a bulk microphysics scheme: Tropical convective systems. Journal of the Atmospheric Sciences 68: 2306–2320. https://doi.org/10.1175/jas-d-10-05000.1.CrossRefGoogle Scholar
  52. Lang., S.E., et al. 2007. Improving simulations of convective systems from TRMM LBA: Easterly and westerly regimes. Journal of the Atmospheric Sciences 64: 1141–1164. https://doi.org/10.1175/jas3879.1.CrossRefGoogle Scholar
  53. Lau, W.K., K.M. Kim, J.J. Shi, T. Matsui, M. Chin, Q. Tan, C. Peters-Lidard, and W.-K. Tao. 2016a. Impacts of aerosol-monsoon interaction on rainfall and circulation over Northern India and the Himalayan Foothills. Climate Dynamics. https://doi.org/10.1007/s00382-016-3430-y.CrossRefGoogle Scholar
  54. Lau, K.-M., C.-H. Sui, M.-D. Chou, and W.-K. Tao. 1994. An inquiry into the cirrus-cloud thermostat effect for tropical sea surface temperature. Geophysical Research Letters 21: 1157–1160. https://doi.org/10.1029/94GL00222.CrossRefGoogle Scholar
  55. Lau, W.K., J.J. Shi, W.-K. Tao, and K.M. Kim. 2016b. What would happen to superstorm Sandy under the influence of a substantially warmer Atlantic sea surface temperature? Geophysical Reseach Letters 43 (2): 802–811. https://doi.org/10.1002/2015gl067050.CrossRefGoogle Scholar
  56. Lau, K.-M., C.-H. Sui, and W.-K. Tao. 1993. A preliminary study of the tropical water cycle and its sensitivity to surface warming. Bulletin of the American Meteorological Society 74: 1313–1321.CrossRefGoogle Scholar
  57. Lee, S.S., J.E. Penner, and S.M. Saleeby. 2009. Aerosol effects on liquid-water path of thin stratocumulus clouds. Journal Geophysical Research 114: D07204. https://doi.org/10.1029/2008jd010513.CrossRefGoogle Scholar
  58. Li, J.-L.F., et al. 2012. An observationally based evaluation of cloud ice water in CMIP3 and CMIP5 GCMs and contemporary reanalyses using contemporary satellite data. Journal Geophysical Research 117: D16105. https://doi.org/10.1029/2012jd017640.CrossRefGoogle Scholar
  59. Li, X., M. Janiga, S. Wang, W.-K. Tao, A. Rowe, W. Xu, C. Liu, and T. Matsui. 2017. Evolution of precipitation structure during the November DYNAMO MJO event: Cloud-resolving model inter-comparison and cross-validation using radar observations. Journal of Geophysical Research (accepted).Google Scholar
  60. Li, X., W.-K. Tao, A. Khain, J. Simpson, and D. Johnson. 2009a. Sensitivity of a cloud-resolving model to bulk and explicit-bin microphysics schemes: Part I: Comparisons. Journal of the Atmospheric Sciences 66: 3–21.CrossRefGoogle Scholar
  61. Li, X., W.-K. Tao, A.P. Khain, J. Simpson, and D.E. Johnson. 2009b. Sensitivity of a cloud-resolving model to bulk and explicit bin microphysical schemes. Part II: Cloud microphysics and storm dynamics interactions. Journal of the Atmospheric Sciences 66: 22–40. https://doi.org/10.1175/2008jas2647.1.CrossRefGoogle Scholar
  62. Li, X., W.-K. Tao, T. Matsui, C. Liu, and H. Masunaga. 2010. Improving a spectral bin microphysical scheme using long-term TRMM satellite observations. Quarterly Journal of the Royal Meteorological Society 136 (647): 382–399.Google Scholar
  63. Li, X., W.-K. Tao, H. Masunaga, G. Gu, and X. Zeng. 2013. Aerosol effects on cumulus congestus population over the Tropical Pacific: A cloud-resolving modeling study. Journal of the Meteorological Society of Japan 91: 817–883. https://doi.org/10.2151/jmsj.2013-607.CrossRefGoogle Scholar
  64. Lim, K.-S., and S.-Y. Hong. 2010. Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Monthly Weather Review 138: 1587–1612.CrossRefGoogle Scholar
  65. Lin, S.-J. 1997. A finite-volume integration method for computing pressure gradient forces in general vertical coordinates. Quarterly Journal of the Royal Meteorological Society 123: 1749–1762.Google Scholar
  66. Lin, S.-J. 2004. A “vertically-Lagrangian” finite-volume dynamical core for global atmospheric models. Monthly Weather Review 132: 2293–2307.CrossRefGoogle Scholar
  67. Lin, Y.-L., R.D. Farley, and H.D. Orville. 1983. Bulk parameterization of the snow field in a cloud model. Journal of Applied Meteorology and Climatology 22: 1065–1092.CrossRefGoogle Scholar
  68. Lin, X., D.A. Randall, and L.D. Fowler. 2000. Diurnal variability of the hydrological cycle and radiative fluxes: Comparisons between observations and a GCM. Journal of Climate 13: 4159–4179.CrossRefGoogle Scholar
  69. Lin, S.-J., and R.B. Rood. 1996. Multidimensional flux form semi-Lagrangian transport schemes. Monthly Weather Review 124: 2046–2070.CrossRefGoogle Scholar
  70. Lin, S.-J., and R.B. Rood. 1997. An explicit flux-form semi-Lagrangian shallow water model on the sphere. Quarterly Journal of the Royal Meteorological Society 123: 2477–2498.CrossRefGoogle Scholar
  71. Loftus, A.M., W.R. Cotton, and G.G. Carrió. 2014. A triple-moment hail bulk microphysics scheme. Part I: Description and initial evaluation. Atmospheric Research. https://doi.org/10.1016/j.atmosres.2014.05.013.CrossRefGoogle Scholar
  72. Loftus, A.M., S.-C. Tsay, W.-K. Tao, P. Pantina, C. Nguyen, P.M. Gabriel, A.X. Nguyen, A.M. Sayer, and T. Matsui. 2016. Coupled aerosol-cloud systems over Northern Vietnam during 7-SEAS/BASELInE: A radar and modeling perspective. Aerosol and Air Quality Research. https://doi.org/10.4209/aaqr/2015.11.0631.
  73. Lynn, B.H., and W.-K. Tao. 2001. A parameterization for the triggering of landscape generated moist convection. Part II: Zero order and first order closure. Journal of the Atmospheric Sciences 58: 593–607.CrossRefGoogle Scholar
  74. Lynn, B.H., W.-K. Tao, and F. Abramopoulos. 2001. A parameterization for the triggering of landscape generated moist convection. Part I: Analyses of high resolution model results. Journal of the Atmospheric Sciences 58: 575–592.CrossRefGoogle Scholar
  75. Lynn, B.H., W.-K. Tao, and P. Wetzel. 1998. A study of landscape generated deep moist convection. Monthly Weather Review 126: 928–942.CrossRefGoogle Scholar
  76. Masunaga, H., M. Satoh, and H. Miura. 2008. A joint satellite and global cloud-resolving model analysis of a Madden-Julian Oscillation event: Model diagnosis. Journal Geophysical Research 113: https://doi.org/10.1029/2008JD009986.
  77. Matsui, T., J.-D. Chern, W.-K. Tao, S. Lang, M. Satoh, T. Hashino, and T. Kubota. 2015. On the land-ocean contrast of tropical convection and microphysics statistics derived from TRMM satellite signals and global storm-resolving models. Journal of Hydrometeorology 17: 1425–1445. https://doi.org/10.1175/jhm-d-15-0111.1.CrossRefGoogle Scholar
  78. Matsui, T., T. Iguchi, X. Li, M. Han, W.-K. Tao, W. Petersen, T. L’Ecuyer, R. Meneghini, W. Olson, C.D. Kummerow, A.Y. Hou, M.R. Schwaller, E.F. Stocker, and J. Kwiatkowski. 2013. GPM satellite simulator over ground validation sites. Bulletin of the American Meteorological Society 94: 1653–1660. https://doi.org/10.1175/bams-d-12-00160.1.CrossRefGoogle Scholar
  79. Matsui, T., J. Santanello, J.J. Shi, W.-K. Tao, D. Wu, C. Peters-Lidard, E. Kemp, M. Chin, D. Starr, M. Sekiguchi, and F. Aires. 2014. Introducing multisensor satellite radiance-based evaluation for regional Earth system modeling. Journal Geophysical Research 119: 8450–8475. https://doi.org/10.1002/2013jd021424.CrossRefGoogle Scholar
  80. Matsui, T., X. Zeng, W.-K. Tao, H. Masunaga, W. Olson, and S. Lang. 2009. Evaluation of long-term cloud-resolving model simulations using satellite radiance observations and multifrequency satellite simulators. Journal of Atmospheric and Oceanic Technology 26: 1261–1274.CrossRefGoogle Scholar
  81. Matsui, T., W.-K. Tao, S.J. Munchak, M. Grecu, and G.J. Huffman. 2015. Satellite view of quasi-equilibrium states in tropical convection and precipitation microphysics. Geophysical Research Letters 42: 1959–1968. https://doi.org/10.1002/2015GL063261.CrossRefGoogle Scholar
  82. Matsui, T., and J.P. Jacob. 2014. Goddard radiation scheme for NU-WRF version 2014. NASA Goddard Space Flight Center, 4 pp. [available in NU-WRF package].Google Scholar
  83. Matsui, T., B. Dolan, S. Rutledge, W.-K. Tao, T. Iguchi, J. Barnum, and S. Lang. 2017. POLARRIS: Polarimetric radar retrievals and instrumental simulator. Journal of Geophysical Research (submitted).Google Scholar
  84. McCumber, M., W.-K. Tao, J. Simpson, R. Penc, and S.-T. Soong. 1991. Comparison of ice-phase microphysical parameterization schemes using numerical simulations of convection. Journal of Applied Meteorology 30: 987–1004.CrossRefGoogle Scholar
  85. Meyers, M.P., P.J. DeMott, and W.R. Cotton. 1992. New primary ice nucleation parameterizations in an explicit cloud model. Journal of Applied Meteorology 31: 708–721.CrossRefGoogle Scholar
  86. Meyers, M.P., R.L. Walko, J.Y. Harrington, and W.R. Cotton. 1997. New RAMS cloud microphysics parameterization. II: The two-moment scheme. Atmospheric Research 45: 3–39.CrossRefGoogle Scholar
  87. Michalakes, J., S.-H. Chen, J. Dudhia, L. Hart, J. Klemp, J. Middlecoff, and W. Skamarock. 2001. Development of a next-generation regional weather research and forecast model, In Developments in Teracomputing: Proceedings of the Ninth ECMWF Workshop on the Use of High Performance Computing in Meteorology, Eds. W. Zwieflhofer and N. Kreitz, World Scientific, Singapore, 269–276.Google Scholar
  88. Mohr, K.I., W.-K. Tao, J. Chern, S.V. Kumar, and C. Peters-Lidard. 2013. The NASA-Goddard Multi-scale Modeling Framework-Land Information System: Global land/atmosphere interaction with resolved convection. Environmental Modeling & Software 39: 103–115. https://doi.org/10.1016/j.envsoft.2012.02.023.CrossRefGoogle Scholar
  89. Morrison, H., J.A. Curry, and V.I. Khvorostyanov. 2005. A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. Journal of the Atmospheric Sciences 62: 1665–1677.CrossRefGoogle Scholar
  90. Morrison, H., and A. Gettelman. 2008. A new two-moment bulk stratiform cloud microphysics scheme in the community atmosphere model, version 3 (CAM3). Part I: Description and numerical tests. Journal of Climate 21: 3642–3658.CrossRefGoogle Scholar
  91. Morrison, H., G. Thompson, and V. Tatarskii. 2009. Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Monthly Weather Review 137: 991–1007.CrossRefGoogle Scholar
  92. Morrison, H., and J.A. Milbtandt. 2015. Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part I: Scheme description and idealized tests. Journal of the Atmospheric Sciences 287–311.CrossRefGoogle Scholar
  93. Mossop, S.C., and J. Hallett. 1974. Ice crystal concentration in cumulus clouds: Influence of the drop spectrum. Science 186: 632–634. https://doi.org/10.1126/science.186.4164.632.CrossRefGoogle Scholar
  94. Nicholls, S.D., S.G. Decker, W.-K. Tao, S.E. Lang, J.J. Shi, and K.I. Mohr. 2017. Influence of bulk microphysics schemes upon Weather Research and Forecasting (WRF) version 3.6.1 nor’easter simulations. Geoscientific Model Development 10: 1033–1049. https://doi.org/10.5194/gmd-10-1033-2017.CrossRefGoogle Scholar
  95. Ooyama, K.V. 2001. A dynamic and thermodynamic foundation for modeling the moist atmosphere with parameterized microphysics. Journal of the Atmospheric Sciences 58: 2073–2102.CrossRefGoogle Scholar
  96. Petch, J.C., and M.E.B. Gray. 2001. Sensitivity studies using a cloud-resolving model simulation of the tropical west Pacific. Quarterly Journal Royal Meteorological Society 127: 2287–2306.CrossRefGoogle Scholar
  97. Peters-Lidard, C.D., E.M. Kemp, T. Matsui, J.A. Santanello, Jr., S.V., Kumar, J.P. Jacob, T. Clune, W.-K. Tao, M. Chin, A. Hou, J.L. Case, D. Kim, K.-M. Kim, W. Lau, Y. Liu, J.-J. Shi, D. Starr, Q. Tan, Z. Tao, B. F. Zaitchik, B. Zavodsky, S.Q. Zhang, and M. Zupanski. 2015. Integrated modeling of aerosol, cloud, precipitation and land processes at satellite-resolved scales. Environmental Modeling & Software 67: 149–159. https://doi.org/10.1016/j.envsoft.2015.01.007.CrossRefGoogle Scholar
  98. Petters, M.D., and S.M. Kreidenweis. 2007. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmospheric Chemistry and Physics 7: 1961–1971.CrossRefGoogle Scholar
  99. Petters, M.D., and S.M. Kreidenweis. 2008. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity—Part 2: Including solubility. Atmospheric Chemistry and Physics 8: 6273–6279.CrossRefGoogle Scholar
  100. Phillips, V.T.J., A. Pokrovsky, and A. Khain. 2007. The influence of time-dependent melting on the dynamics and precipitation production in maritime and continental storm clouds. Journal of the Atmospheric Sciences 64: 338–359. https://doi.org/10.1175/JAS3832.1.CrossRefGoogle Scholar
  101. Pickering, K.E., A.M. Thompson, J.R. Scala, W.-K. Tao, and J. Simpson. 1992a. Ozone production potential following convective redistribution of biomass emissions. Journal of Atmospheric Chemistry 14: 297–313.CrossRefGoogle Scholar
  102. Pickering, K.E., J.R. Scala, A.M. Thompson, W.-K. Tao, and J. Simpson. 1992b. A regional estimate of convective transport of CO from biomass burning. Geophysical Research Letters 19: 289–292. https://doi.org/10.1029/92GL00036.CrossRefGoogle Scholar
  103. Pinsky, M., A. Khain, and M. Shapiro. 2000. Stochastic effects of cloud droplet hydrodynamic interaction in a turbulent flow. Atmospheric Research 53: 131–169.CrossRefGoogle Scholar
  104. Pinsky, M., A. Khain, and M. Shapiro. 2001. Collision efficiency of drops in a wide range of Reynolds numbers: Effects of pressure on spectrum evolution. Journal of the Atmospheric Sciences 58: 742–764.CrossRefGoogle Scholar
  105. Posselt, D.J. 2016. A Bayesian examination of deep convective squall line sensitivity to changes in cloud microphysical parameters. Journal of the Atmospheric Sciences 73: 637–665.CrossRefGoogle Scholar
  106. Pruppacher, Hans R., and James D. Klett. 1997. Microphysics of clouds and precipitation. Dordrecht: Kluwer Academic Publishers.Google Scholar
  107. Randall, D.A., Harshvardhan, and D.A., Dazlich. 1991. Diurnal variability of the hydrologic cycle in a general circulation model, Journal of the Atmospheric Sciences 48: 40–62.CrossRefGoogle Scholar
  108. Rotunno, R., J.B. Klemp, and M.L. Weisman. 1988. A theory for strong, long-lived squall lines. Journal of the Atmospheric Sciences 45: 463–485.CrossRefGoogle Scholar
  109. Rutledge, S.A., R.A. Houze Jr., and M.I. Biggerstaff. 1988. The Oklahoma-Kansas mesoscale convective system of 10–11 June 1985: Precipitation structure and single-doppler radar analysis. Monthly Weather Review 116: 1409–1430.CrossRefGoogle Scholar
  110. Rutledge, S.A., and P.V. Hobbs. 1983. The mesoscale and microscale structure of organization of clouds and precipitation in midlatitude cyclones. VIII: A model for the ‘‘seeder-feeder’’ process in warm-frontal rainbands. Journal of the Atmospheric Sciences 40: 1185–1206. https://doi.org/10.1175/1520-0469(1983)040,1185:TMAMSA.2.0.CO;2.
  111. Rutledge, S.A., and P.V. Hobbs. 1984. The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. Part XII: A diagnostic modeling study of precipitation development in narrow cold-frontal rainbands. Journal of the Atmospheric Sciences 41: 2949–2972. https://doi.org/10.1175/1520-0469(1984)041,2949:TMAMSA.2.0.CO;2.
  112. Saleeby, S.M., and W.R. Cotton. 2008. A binned approach to cloud-droplet riming implemented in a bulk microphysics model. Journal of Applied Meteorology and Climatology 47: 694–703.CrossRefGoogle Scholar
  113. Saleeby, S.M., and S.C. van den Heever. 2013. Developments in the CSU-RAMS aerosol model: Emissions, nucleation, regeneration, deposition, and radiation. Journal of Applied Meteorology and Climatology 52: 2601–2622.CrossRefGoogle Scholar
  114. Saleeby, S.M., and W.R. Cotton. 2004. A large-droplet mode and prognostic number concentration of cloud droplets in the Colorado State University Regional Atmospheric Modeling System (RAMS). Part I: Module descriptions and supercell test simulations. Journal of Applied Meteorology 43 (1): 182–195.CrossRefGoogle Scholar
  115. Satoh, M., H. Tomita, H. Yashiro, H. Miura, C. Kodama, T. Seiki, A.T. Noda, Y. Yamada, D. Goto, M. Sawada, T. Miyoshi, Y. Niwa, M. Hara, Y. Ohno, S. Iga, T. Arakawa, T. Inoue, and H. Kubokawa. 2014. The non-hydrostatic icosahedral atmospheric model: Description and development. Progress in Earth and Planetary Science 1: 18. https://doi.org/10.1186/s40645-014-0018-1.
  116. Scala, J.R., M. Garstang, W.-K. Tao, K.E. Pickering, A.M. Thompson, J. Simpson, V. Kirchhoff, E.V. Browell, G.W. Sachse, A.L. Torres, G.L. Gregory, R.A. Rasmussen, and M.A. Khalil. 1990. Cloud draft structure and trace gas transport. Journal Geophysical Research 95: 17015–17030.CrossRefGoogle Scholar
  117. Seifert, A. 2005. On the shape-slope relation of drop size distribution in convective rain. Journal of Applied Meteorology and Climatology 44: 1146–1151.CrossRefGoogle Scholar
  118. Seifert, A., and K.D. Beheng. 2001. A double-moment parameterization for simulating autoconversion, accretion and selfcollection. Atmospheric Research 59–60: 265–281.CrossRefGoogle Scholar
  119. Seifert, A., A. Khain, U. Blahak, and K.D. Beheng. 2005. Possible effects of collisional breakup on mixed-phase deep convection simulated by a spectral (bin) cloud model. Journal of the Atmospheric Sciences 62: 1917–1931. https://doi.org/10.1175/jas3432.1.CrossRefGoogle Scholar
  120. Shi, J.J., W.-K. Tao, T. Matsui, A. Hou, S. Lang, C. Peters-Lidard, G. Jackson, R. Cifelli, S. Rutledge, and W. Petersen. 2010. Microphysical properties of the January 20–22 2007 snow events over Canada: Comparison with in-situ and satellite observations. Journal of Applied Meteorology and Climatology 49 (11): 2246–2266.CrossRefGoogle Scholar
  121. Shi, J.J., T. Matsui, W.-K. Tao, Q. Tan, C. Peters-Lidard, M. Chin, K. Pickering, N. Guy, S. Lang, and E.M. Kemp. 2014. Implementation of an aerosol-cloud-microphysics-radiation coupling into the NASA Uni ed WRF: Simulation results for the 6–7 August 2006 AMMA special observing period. Quarterly Journal of the Royal Meteorological Society. https://doi.org/10.1002/qj.2286.CrossRefGoogle Scholar
  122. Shie, C.-L., W.-K. Tao, J. Simpson, and C.-H. Sui. 2003. Quasi-equilibrium states in the tropics simulated by a cloud-resolving model. Part I: Specific features and budget analysis. Journal of Climate 16: 817–833. https://doi.org/10.1175/1520-0442(2003)016<0817:QESITT>2.0.CO;2.CrossRefGoogle Scholar
  123. Simpson, J., C. Kummerow, W.-K. Tao, and R.F. Adler. 1996. On the Tropical Rainfall Measuring Mission (TRMM). Meteorology and Atmospheric Physics 60: 19–36.CrossRefGoogle Scholar
  124. Simpson, J., and W.-K. Tao. 1993. The Goddard cumulus ensemble model. Part II: applications for studying cloud and precipitating processes and for NASA TRMM. Terrestrial Atmospheric and Oceanic Sciences 4: 73–116.CrossRefGoogle Scholar
  125. Skamarock, W.C., J.B. Klemp, J. Dudhia, D.O. Gill, D.M. Barker, M.G. Duda, X.-Y. Huang, W. Wang, and J.G. Powers. 2008. A description of the advanced research WRF version 3, NCAR Technical Note, NCAR/TN-475flSTR (2008), p. 113.Google Scholar
  126. Slingo, A., R.C. Wilderspin, and S.J. Brentnall. 1987. Simulation of the diurnal cycle of outgoing longwave radiation with an atmospheric GCM. Monthly Weather Review 115: 1451–1457.CrossRefGoogle Scholar
  127. Smolarkiewicz, P.K., and W.W. Grabowski. 1990. The multidimensional positive advection transport algorithm: Nonoscillatory option. Journal of Computational Physics 86: 355–375. https://doi.org/10.1016/0021-9991(90)90105-a.CrossRefGoogle Scholar
  128. Soong, S.-T., and Y. Ogura. 1980. Response of trade wind cumuli to large-scale processes. Journal of the Atmospheric Sciences 37: 2035–2050. https://doi.org/10.1175/1520-0469(1980)037,2035:rotctl.2.0.co;2.
  129. Soong, S.-T., and W.-K. Tao. 1980. Response of deep tropical clouds to mesoscale processes. Journal of the Atmospheric Sciences 37: 2016–2036.CrossRefGoogle Scholar
  130. Soong, S.-T., and W.-K. Tao. 1984. A numerical study of the vertical transport of momentum in a tropical rainband. Journal of the Atmospheric Sciences 41: 1049–1061.CrossRefGoogle Scholar
  131. Stephens, G.L., and T.D. Ellis. 2008. Controls of global-mean precipitation increases in global warming GCM experiments. Journal of Climate 21: 6141–6155.CrossRefGoogle Scholar
  132. Sui, C.H., K.M. Lau, Y.N. Takayabu, and D.A. Short. 1997. Diurnal variations in tropical oceanic cumulus convection during TOGA COARE. Journal of the Atmospheric Sciences 54: 639–655.CrossRefGoogle Scholar
  133. Sui, C.-H., K.M. Lau, W.-K. Tao, and J. Simpson. 1994. The tropical water and energy cycles in a cumulus ensemble model. Part I: Equilibrium climate. Journal of the Atmospheric Sciences 51: 711–728.CrossRefGoogle Scholar
  134. Sui, C.-H., K.M. Lau, and X. Li. 1998. Convective-radiative interaction in simulated diurnal variations of tropical cumulus ensemble. Journal of the Atmospheric Sciences 55: 2345–2357.CrossRefGoogle Scholar
  135. Sullivan, R.C., M.J.K. Moore, M.D. Petters, S.M. Kreidenweis, G.C. Roberts, and K.A. Prather. 2009. Effect of chemical mixing state on the hygroscopicity and cloud nucleation properties of calcium mineral dust particles. Atmospheric Chemistry and Physics 9: 3303–3316. https://doi.org/10.5194/acp-9-3303-2009.CrossRefGoogle Scholar
  136. Tao, W.-K., et al. 2003. Microphysics, radiation and surface processes in the Goddard Cumulus Ensemble (GEC) model. Meteorology and Atmospheric Physics 82: 97–137.CrossRefGoogle Scholar
  137. Tao, W.-K. 2007. Cloud resolving modeling. Journal of the Meteorological Society of Japan 85B: 305–330.CrossRefGoogle Scholar
  138. Tao, W.-K., et al. 2009. A multiscale modeling system: Developments, applications, and critical Issues. Bulletin of the American Meteorological Society 90: 515–534. https://doi.org/10.1175/2008bams2542.1.CrossRefGoogle Scholar
  139. Tao, W.-K., et al. 2014. The Goddard cumulus ensemble model (GCE): Improvements and applications for studying precipitation processes. Atmospheric Research 143: 392–424.  https://doi.org/10.1016/j.atmosres.2014.03.005.CrossRefGoogle Scholar
  140. Tao, W.-K., and J. Simpson. 1989. Modeling study of a tropical squall-type convective line. Journal of the Atmospheric Sciences 46: 177–202.CrossRefGoogle Scholar
  141. Tao, W.-K., and J. Simpson. 1993. The Goddard cumulus ensemble model. Part I: Model description. Terrestrial Atmospheric and Oceanic Sciences 4: 35–72.CrossRefGoogle Scholar
  142. Tao, W.-K., J. Simpson, S. Lang, J. Simpson, and R. Adler. 1993a. Retrieval Algorithms for estimating the vertical profiles of latent heat release: Their applications for TRMM. Journal of the Meteorological Society of Japan 71: 685–700.CrossRefGoogle Scholar
  143. Tao, W.-K., D. Wu, S. Lang, J.-D. Chern, C. Peters-Lidard, A. Fridlind, and T. Matsui. 2016b. High-resolution NU-WRF simulations of a deep convective-precipitation system during MC3E: Further improvements and comparisons between Goddard microphysics schemes and observations. Journal Geophysical Research 121: 1278–1305. https://doi.org/10.1002/2015jd023986.CrossRefGoogle Scholar
  144. Tao, W.-K., D. Wu, T. Matsui, C. Peters-Lidard, S. Lang, A. Hou, M. Rienecker, W. Petersen, and M. Jensen. 2013. Precipitation intensity and variation during MC3E: A numerical modeling study. Journal Geophysical Research 118: 7199–7218.  https://doi.org/10.1002/jgrd.50410.CrossRefGoogle Scholar
  145. Tao, W.‐K., J. Simpson, and M. McCumber. 1989. An ice‐water saturation adjustment. Monthly Weather Review 117: 231–235.CrossRefGoogle Scholar
  146. Tao, W.-K. 2003. Goddard cumulus ensemble (GCE) model: Application for understanding precipitation processes, in Cloud Systems, Hurricanes and TRMM. AMS Meteorological Monographs pp. 107–138, Boston, Mass.Google Scholar
  147. Tao, W.-K., and J.-D. Chern. 2017. The impact of mesoscale convective systems on global precipitation: A modeling study. Journal of Advances in Modeling Earth Systems. https://doi.org/10.1002/2016ms000836CrossRefGoogle Scholar
  148. Tao, W.-K., and X. Li. 2016. The relationship between latent heating, vertical velocity, and precipitation processes: The impact of aerosols on deep convective systems. Journal of Geophysical Research 121. https://doi.org/10.1002/2015jd024267.Google Scholar
  149. Tao, W.-K., and M.W. Moncrieff. 2009. Multi-scale cloud-system modeling. Reviews of Geophysics 47: RG4002. https://doi.org/10.1029/2008rg000276.
  150. Tao, W.-K., S. Lang, J. Simpson, C.-H. Sui, B. Ferrier, and M.-D. Chou. 1996. Mechanisms of cloud–radiation interaction in the tropics and midlatitudes. Journal of the Atmospheric Sciences 53: 2624–2651.CrossRefGoogle Scholar
  151. Tao, W.-K., X. Li, A. Khain, T. Matsui, S. Lang, and J. Simpson. 2007. The role of atmospheric aerosol concentration on deep convective precipitation: Cloud-resolving model simulations. Journal of Geophysical Research 112: D24S18. https://doi.org/10.1029/2007jd008728.
  152. Tao, W.-K., et al. 2016a. TRMM latent heating retrieval: Applications and comparisons with field campaigns and large-scale analyses. Amer. Meteor. Soc. Meteor. Mono. - Multi-scale Convection-Coupled Systems in the Tropics, 56, Chapter 2, https://doi.org/10.1175/amsmonographs-d-15-0013.1.CrossRefGoogle Scholar
  153. Tao, W.-K., and J. Simpson. 1984. Cloud interactions and merging: Numerical simulations. Journal of the Atmospheric Sciences 41: 2901–2917.CrossRefGoogle Scholar
  154. Tao, W.-K., J. Simpson, S. Lang, M. McCumber, R. Adler, and R. Penc. 1990. An algorithm to estimate the heating budget from vertical hydrometeor profiles. Journal of Applied Meteorology 29: 1232–1244.CrossRefGoogle Scholar
  155. Tao, W.-K., and S.-T. Soong. 1986. A study of the response of deep tropical clouds to mesoscale processes: Three-dimensional numerical experiments. Journal of the Atmospheric Sciences 43: 2653–2676.CrossRefGoogle Scholar
  156. Tao, W.-K., J. Simpson, C.-H. Sui, B. Ferrier, S. Lang, J. Scala, M.-D. Chou, and K. Pickering. 1993b. Heating, moisture and water budgets of tropical and midlatitude squall lines: Comparisons and sensitivity to long wave radiation. Journal of the Atmospheric Sciences 50: 673–690.CrossRefGoogle Scholar
  157. Tao, W.-K., J. Simpson, and S.-T. Soong. 1987. Statistical properties of a cloud ensemble: A numerical study. Journal of the Atmospheric Sciences 44: 3175–3187.CrossRefGoogle Scholar
  158. Tao, W.-K., J.-P. Chen, Z. Li, C. Wang, and C. Zhang. 2012. Impact of aerosols on convective clouds and precipitation. Reviews of Geophysics 50: RG2001. https://doi.org/10.1029/2011RG000369.
  159. Tao, W.-K., J. Scala, and J. Simpson. 1995. The effects of melting processes on the development of a tropical and a midlatitude squall line. Journal of the Atmospheric Sciences 52: 1934–1948. https://doi.org/10.1175/1520-0469(1995)052<1934:TEOMPO>2.0.CO;2.CrossRefGoogle Scholar
  160. Tao, W.-K., J. Simpson, C.-H. Sui, C.-L. Shie, B. Zhou, K.M. Lau, and M.W. Moncrieff. 1999. On equilibrium states simulated by cloud-resolving models. Journal of the Atmospheric Sciences 56: 3128–3139. https://doi.org/10.1175/1520-0469(1999)056<3128:ESSBCR>2.0.CO;2.CrossRefGoogle Scholar
  161. Tao, W.-K., S. Lang, W.S. Olson, S. Yang, R. Meneghini, J. Simpson, C. Kummerow, E. Smith, and J. Halverson. 2001. Retrieved vertical profiles of latent heat release using TRMM products for February 1998. Journal of Applied Meteorology 40: 957–982. https://doi.org/10.1175/1520-0450(2001)040<0957:RVPOLH>2.0.CO;2.CrossRefGoogle Scholar
  162. Tao, W.-K., D. Johnson, C.-L. Shie, and J. Simpson. 2004. The atmospheric energy budget and large-scale precipitation efficiency of convective systems during TOGA COARE, GATE, SCSMEX, and ARM: Cloud-resolving model simulations. Journal of the Atmospheric Sciences 61: 2405–2423. https://doi.org/10.1175/1520-0469(2004)061<2405:TAEBAL>2.0.CO;2.CrossRefGoogle Scholar
  163. Tao, W.-K., et al. 2006. Retrieval of latent heating from TRMM measurements. Bulletin of the American Meteorological Society 87: 1555–1572. https://doi.org/10.1175/BAMS-87-11-1555.CrossRefGoogle Scholar
  164. Tao, W.-K., S. Lang, X. Zeng, S. Shige, and Y. Takayabu. 2010. Relating convective and stratiform rain to latent heating. Journal of Climate 23: 1874–1893. https://doi.org/10.1175/2009JCLI3278.1.CrossRefGoogle Scholar
  165. Thompson, A.M., W.-K. Tao, K.E. Pickering, J.R. Scala, and J. Simpson. 1997. Tropical deep convection and Ozone formation. Bulletin of the American Meteorological Society 78: 1043–1054.CrossRefGoogle Scholar
  166. Tomita, H., K. Goto, and M. Satoh. 2008. A new approach of atmospheric general circulation model: Global cloud resolving model NICAM and its computational performance. SIAM Journal on Scientific Computing 2008 (30): 2755–2776.CrossRefGoogle Scholar
  167. Tsay, S.-C., et al. 2016. Satellite-surface perspectives of air quality and aerosol-cloud effects on the environment: An overview of 7-SEAS/BASELInE. Aerosol and Air Quality Research 16: 2581–2602. https://doi.org/10.4209/aaqr.2016.08.0350.CrossRefGoogle Scholar
  168. Varble, A., E.J. Zipser, A.M. Fridlind, P. Zhu, A.S. Ackerman, J.-P. Chaboureau, S. Collis, J. Fan, A. Hill, and B. Shipway. 2014. Evaluation of cloud-resolving and limited area model intercomparison simulations using TWP-ICE observations: 1. Deep convective updraft properties. Journal of Geophysical Research 119: 13,891–13,918. https://doi.org/10.1002/2013jd021371.Google Scholar
  169. Wang, Y., W.-K. Tao, and J. Simpson. 1996. The impact of ocean surface fluxes on a TOGA COARE convective system. Monthly Weather Review 124: 2753–2763. 10.1175/1520-0493(1996)124<2753:TIOOSF>2.0.CO;2.CrossRefGoogle Scholar
  170. Wang, Y., W.-K. Tao, J. Simpson, and S. Lang. 2003. The sensitivity of tropical squall lines (GATE and TOGA COARE) to surface fluxes: 3-D cloud resolving model simulations. Quarterly Journal of the Royal Meteorological Society 129: 987–1007. https://doi.org/10.1256/qj.00.131.CrossRefGoogle Scholar
  171. Wu, D., C. Peters-Lidard, W.-K. Tao, and W. Petersen. 2016. Evaluation of NU-WRF real-time rainfall forecast for IFloodS. Journal of Hydrometeorology. https://doi.org/10.1175/jhm-d-15-0134.1.CrossRefGoogle Scholar
  172. Yanai, M., S. Esbensen, and J. Chu. 1973. Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. Journal of the Atmospheric Sciences 30: 611–627.CrossRefGoogle Scholar
  173. Yoneyama, K., C. Zhang, and C.N. Long. 2013. Tracking pulses of the Madden-Julian oscillation. Bulletin of the American Meteorological Society 94: 1871–1891. https://doi.org/10.1175/bamsd-12-00157.1.CrossRefGoogle Scholar
  174. Yuter, S.E., and R.A. Houze Jr. 1995. Three-dimensional kinematic and microphysical evolution of Florida cumulo- nimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Monthly Weather Review 123: 1941–1963. https://doi.org/10.1175/1520-0493(1995)1231941:tdkame.2.0.CO;2.CrossRefGoogle Scholar
  175. Zeng, X., W.-K. Tao, T. Matsui, S. Xie, S. Lang, M. Zhang, D. Starr, and X. Li. 2010. Estimating the ice crystal enhancement factor in the tropics. Journal of the Atmospheric Sciences 68: 1424–1434.CrossRefGoogle Scholar
  176. Zeng, X., W.-K. Tao, M. Zhang, A.Y. Hou, S. Xie, S. Lang, X. Li, D. Starr, X. Li, and J. Simpson. 2009a. The indirect effect of ice nuclei on atmospheric radiation. Journal of the Atmospheric Sciences 66: 41–61.CrossRefGoogle Scholar
  177. Zeng, X., W.-K. Tao, M. Zhang, S. Lang, C.D. Peters-Lidard, J. Simpson, S. Xie, S. Kumar, J.V. Geiger, C.-L. Shie, and J.L. Eastman. 2007. Evaluation of long-term cloud-resolving modeling with observational cloud data. Journal of the Atmospheric Sciences 64: 4153–4177.CrossRefGoogle Scholar
  178. Zeng, X., W.-K. Tao, M.-H. Zhang, A. Y. Hou, S. Xie, S. Lang, X. Li, D. O’C Starr, and X. Li. 2009b. A contribution by ice nuclei to global warming. Quarterly Journal of the Royal Meteorological Society 135: 1614–1629.CrossRefGoogle Scholar
  179. Zeng, X., W.-K. Tao, S. Powell, R.A. Houze, P.E. Ciesielski, N. Guy, H. Piece, and T. Matsui. 2013. A comparison of the water budgets between clouds from AMMA and TWP-ICE. Journal of the Atmospheric Sciences 70: 487–503. https://doi.org/10.1175/JAS-D-12-050.1.CrossRefGoogle Scholar
  180. Zhang, J., K. Howard, C. Langston, B. Kaney, Y. Qi, L. Tang, H. Grams, Y. Wang, S. Cocks, S. Martinaitis, and A. Arthur. 2016. Multi-radar multi-sensor (MRMS) quantitative precipitation estimation: Initial operating capabilities. Bulletin of the American Meteorological Society 97: 621–638.CrossRefGoogle Scholar
  181. Zhang, S.Q., T. Matsui, S. Cheung, M. Zupanski, and C. Peters-Lidard. 2017. Impact of assimilated precipitation-sensitive radiances on the NU-WRF simulation of the West African Monsoon. Monthly Weather Review (in revision).CrossRefGoogle Scholar
  182. Zhou, Y., D. Wu, K.-M. Lau, and W.-K. Tao. 2016. Scale dependence of land atmospheric interactions in wet and dry regions as simulated with NU-WRF over Southwest and Southeast US. Journal of Hydrometeorology. https://doi.org/10.1175/jhm-d-16-0024.1.CrossRefGoogle Scholar

Copyright information

© This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2019

Authors and Affiliations

  • W.-K. Tao
    • 1
    Email author
  • J. Chern
    • 1
    • 2
  • T. Iguchi
    • 1
    • 2
  • S. Lang
    • 1
    • 3
  • M.-I. Lee
    • 4
  • X. Li
    • 1
    • 5
  • A. Loftus
    • 2
    • 6
  • T. Matsui
    • 1
    • 2
  • K. Mohr
    • 7
  • S. Nicholls
    • 1
    • 8
  • C. Peters-Lidard
    • 7
  • D. J. Posselt
    • 9
  • G. Skofronick-Jackson
    • 1
  1. 1.Mesoscale Atmospheric Processes LaboratoryNASA/Goddard Space Flight CenterGreenbeltUSA
  2. 2.Earth System Science Interdisciplinary Center, University of MarylandCollege ParkUSA
  3. 3.Science Systems and Applications Inc.LanhamUSA
  4. 4.School of Urban and Environmental EngineeringUlsan National Institute of Science & Technology (UNIST)UlsanRepublic of Korea
  5. 5.Goddard Earth Sciences Technology and ResearchMorgan State UniversityBaltimoreUSA
  6. 6.Climate and Radiation LaboratoryNASA/Goddard Space Flight CenterGreenbeltUSA
  7. 7.Earth Sciences DivisionNASA/Goddard Space Flight CenterGreenbeltUSA
  8. 8.Joint Center for Earth Systems Technology, University of MarylandBaltimoreUSA
  9. 9.Jet Propulsion LaboratoryPasadenaUSA

Personalised recommendations