Advertisement

Challenges of Improving the Stratiform Processes in a Coupled Climate Model with Indian Monsoon Perspective

  • Parthasarathi MukhopadhyayEmail author
  • R. Phani Murali Krishna
  • S. Abhik
  • Malay Ganai
  • Kumar Roy
Chapter
Part of the Springer Atmospheric Sciences book series (SPRINGERATMO)

Abstract

Stratiform rain and associated cloud processes play an important role in the Indian summer monsoon rainfall propagation and distribution. In spite of improvement in model resolution, the parameterization of stratiform cloud processes remains elusive. An attempt is made here to improve the parameterization of stratiform processes of NCEP (National Center for Environmental Prediction) CFSv2 (climate forecast system version 2.0) coupled model for better simulation of the Indian summer monsoon. Physically more realistic cloud microphysics scheme (WSM6) suitably modified with Indian aircraft observation along with a revised simplified Arakawa Schubert (RSAS) and modified radiation parameterization has been implemented in CFSv2. The simulation of stratiform rainfall and its northward propagation by a modified version of CFSv2 (CFSCR) is compared with the default CFSv2. The improved cloud parameterization enables the model to realistically simulate the stratiform rain and its fraction against the convective rain of the model. The CFSCR is also able to improve the stratiform rain efficiency in the model. This development demonstrates that improved cloud processes can resolve the issue of erroneous convective and stratiform fraction in CFSv2.

Keywords

Stratiform processes Coupled model Indian monsoon 

Notes

Acknowledgements

The authors are grateful to Director, IITM for the encouragement of the study. The authors are grateful to Ministry of Earth Science, Government of India, for funding and IITM HPC is gratefully acknowledged for allowing the CFSv2 run to be accomplished.

References

  1. Abhik, S., P. Mukhopadhyay, and B.N. Goswami. 2014. Evaluation of mean and intraseasonal variability of Indian summer monsoon simulation in ECHAM5: Identification of possible source of bias. Climate Dynamics 43: 389–406.  https://doi.org/10.1007/s00382-013-1824-7.CrossRefGoogle Scholar
  2. Abhik, S., R.P.M. Krishna, M. Mahakur, M. Ganai, P. Mukhopadhyay, and J. Dudhia. 2017. Revised cloud processes to improve the mean and intraseasonal variability of Indian summer monsoon in climate forecast system: Part 1. Journal of Advances in Modeling Earth Systems 9: 1–28.  https://doi.org/10.1002/2016MS000819.CrossRefGoogle Scholar
  3. Chattopadhyay, R., B.N. Goswami, A.K. Sahai, and K. Fraedrich. 2009. Role of stratiform rainfall in modifying the northward propagation of monsoon intraseasonal oscillation. Journal of Geophysical Research Atmospheres 114: 1–15.  https://doi.org/10.1029/2009JDO11869.CrossRefGoogle Scholar
  4. Dai, A. 2006. Precipitation characteristics in eighteen coupled climate models. Journal of Climate 19: 4605–4630.  https://doi.org/10.1175/JCLI3884.1.CrossRefGoogle Scholar
  5. Goswami, B.N., and R.S. Ajayamohan. 2001. Intraseasonal oscillations and interannual variability of Indian summer monsoon. Journal of Climate 14: 1180–1198.  https://doi.org/10.1175/1520-0442(2001)014%3c1180:IOAIVO%3e2.0.CO;2.CrossRefGoogle Scholar
  6. Goswami, B.B., M. Deshpande, P. Mukhopadhyay, et al. 2014. Simulation of monsoon intraseasonal variability in NCEP CFSv2 and its role on systematic bias. Climate Dynamics 43: 2725–2745.  https://doi.org/10.1007/s00382-014-2089-5.CrossRefGoogle Scholar
  7. Goswami, B.B., R.P.M. Krishna, P. Mukhopadhyay, et al. 2015. Simulation of the Indian summer monsoon in the superparameterized climate forecast system version 2: Preliminary results. Journal of Climate 28: 8988–9012.  https://doi.org/10.1175/JCLI-D-14-00607.1.CrossRefGoogle Scholar
  8. Goswami, B.B., R.P.M. Krishna, P. Mukhopadhyay, et al. 2017. Implementation and calibration of a stochastic multicloud convective parameterization in the NCEP climate forecast system (CFSv2). Journal of Advances in Modeling Earth Systems.  https://doi.org/10.1002/2017ms001014.CrossRefGoogle Scholar
  9. Griffies, S.M., M.J. Harrison, R.C. Pacanowski, and A. Rosati. 2004. A technical guide to MOM4. GFDL Ocean Group Technical Report 5: 371.Google Scholar
  10. Han, J., and H.-L. Pan. 2011. Revision of convection and vertical diffusion schemes in the NCEP global forecast system. Weather Forecast 26: 520–533.  https://doi.org/10.1175/WAF-D-10-05038.1.CrossRefGoogle Scholar
  11. Hong, S., and J. Lim. 2006. The WRF single-moment 6-class microphysics scheme (WSM6). Journal of the Korean Meteorological Society 42: 129–151.Google Scholar
  12. Houze Jr., R.A. 1997. Stratiform precipitation in the tropics: A meteorological paradox? Bulletin of the American Meteorological Society 78: 2179–2196.  https://doi.org/10.1175/1520-0477(1997)078%3c2179:SPIROC%3e2.0.CO;2.CrossRefGoogle Scholar
  13. Huffman, G.J., D.T. Bolvin, E.J. Nelkin, et al. 2007. The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. Journal of Hydrometeorology 8: 38–55.  https://doi.org/10.1175/JHM560.1.CrossRefGoogle Scholar
  14. Jiang, X., D.E. Waliser, J.L. Li, and C. Woods. 2011. Vertical cloud structures of the boreal summer intraseasonal variability based on CloudSat observations and ERA-interim reanalysis. Climate Dynamics 36: 2219–2232.  https://doi.org/10.1007/s00382-010-0853-8.CrossRefGoogle Scholar
  15. Khairoutdinov, M.F., and D.A. Randall. 2003. Cloud-resolving modeling of the ARM summer 1997 IOP: Model formulation, results, uncertainties and sensitivities. Journal of Atmospheric Science 60: 607–625.CrossRefGoogle Scholar
  16. Kummerow, C., Y. Hong, W.S. Olson, et al. 2001. The evolution of the Goddard profiling algorithm (GPROF) for rainfall estimation from passive microwave sensors. Journal of Applied Meteorology 40: 1801–1820.  https://doi.org/10.1175/1520-0450(2001)040%3c1801:TEOTGP%3e2.0.CO;2.CrossRefGoogle Scholar
  17. Li, F., D. Rosa, W.D. Collins, and M.F. Wehner. 2012. “Super-parameterization’’: A better way to simulate regional extreme precipitation? Journal of Advances in Modeling Earth Systems 4: M04002.  https://doi.org/10.1029/2011MS000106.CrossRefGoogle Scholar
  18. Lin, J.-L., K.M. Weickman, G.N. Kiladis, B.E. Mapes, S.D. Schubert, M.J. Suarez, J.T. Bacmeister, and M.-I. Lee. 2008. Subseasonal variability associated with Asian summer monsoon simulated by 14 IPCC AR4 coupled GCMs. Journal of Climate 21: 4541–4567.  https://doi.org/10.1175/2008JCLI1816.1.CrossRefGoogle Scholar
  19. Moorthi, S., H.L. Pan, and P. Caplan. 2001. Changes to the 2001 NCEP operational MRF/AVN global analysis/forecast system. NWS Technical Procedures Bulletin 484: 14p.Google Scholar
  20. Pan, H.L., and W.S. Wu. 1995. Implementing a mass flux convective parameterization package for the NMC medium-range forecast model. NMC Office Note 409.Google Scholar
  21. Rajeevan, M., P. Rohini, K. Niranjan Kumar, et al. 2013. A study of vertical cloud structure of the Indian summer monsoon using CloudSat data. Climate Dynamics 40: 637–650.  https://doi.org/10.1007/s00382-012-1374-4.CrossRefGoogle Scholar
  22. Sabeerali, C.T., A. Ramu Dandi, A. Dhakate, et al. 2013. Simulation of boreal summer intraseasonal oscillations in the latest CMIP5 coupled GCMs. Journal of Geophysical Research Atmospheres 118: 4401–4420.  https://doi.org/10.1002/jgrd.50403.CrossRefGoogle Scholar
  23. Saha, S., S. Moorthi, X. Wu, et al. 2014. The NCEP climate forecast system version 2. Journal of Climate 27: 2185–2208.  https://doi.org/10.1175/JCLI-D-12-00823.1.CrossRefGoogle Scholar
  24. Sperber, K.R., and H. Annamalai. 2008. Coupled model simulations of boreal summer intraseasonal (30–50 day) variability, Part 1: Systematic errors and caution on use of metrics. Climate Dynamics 31: 345–372.  https://doi.org/10.1007/s00382-008-0367-9.CrossRefGoogle Scholar
  25. Sundqvist, H., E. Berge, and J.E. Kristjansson. 1989. Condensation and cloud parameterization studies with a mesoscale numerical weather prediction model. Monthly Weather Review 117: 1641–1657.  https://doi.org/10.1175/1520-0493(1989)117%3c1641:CACPSW%3e2.0.CO;2.CrossRefGoogle Scholar
  26. Waliser, D.E., K. Jin, I.S. Kang, et al. 2003. AGCM simulations of intraseasonal variability associated with the Asian summer monsoon. Climate Dynamics 21: 423–446.  https://doi.org/10.1007/s00382-003-0337-1.CrossRefGoogle Scholar
  27. Webster, P.J., V.O. Magaña, T.N. Palmer, et al. 1998. Monsoons: Processes, predictability, and the prospects for prediction. Journal of Geophysical Research: Oceans 103: 14451–14510.  https://doi.org/10.1029/97JC02719.CrossRefGoogle Scholar
  28. Yoo, H., Z. Li, Y.T. Hou, et al. 2013. Diagnosis and testing of low-level cloud parameterizations for the NCEP/GFS model using satellite and ground-based measurements. Climate Dynamics 41: 1595–1613.  https://doi.org/10.1007/s00382-013-1884-8.CrossRefGoogle Scholar
  29. Zhao, Q., and F.H. Carr. 1997. A prognostic cloud scheme for operational NWP models. Monthly Weather Review 125: 1931–1953.  https://doi.org/10.1175/1520-0493(1997)125%3c1931:APCSFO%3e2.0.CO;2.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Parthasarathi Mukhopadhyay
    • 1
    Email author
  • R. Phani Murali Krishna
    • 1
  • S. Abhik
    • 2
  • Malay Ganai
    • 1
  • Kumar Roy
    • 1
  1. 1.Indian Institute of Tropical MeteorologyPashan, PuneIndia
  2. 2.School of Earth Atmosphere & EnvironmentMonash UniversityClaytonAustralia

Personalised recommendations