Advertisement

Lesion Classification Using Convolutional Neural Network

  • Mayank SharmaEmail author
  • Aishwarya Bhave
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 898)

Abstract

Malignant melanoma is uncommon in India as compared to the Western nations. However, its growth in recent years has been significant. Early detection of malignant skin lesions can help in proper cure. All recent works on automated classification of skin lesions generate a set of features based on the lesion segment such as lesion diameter and texture. The lesions are then classified into malignant and benign classes based on these features. In our work, we use convolutional neural networks (CNNs) with LeNet architecture in order to automate the feature extraction and selection process. We classify skin lesions in binary class of malignant and benign using ISBI 2016 and PH2 data set with an accuracy of 75% and 97.91%, respectively.

Keywords

Skin lesion Skin lesion classification Convolutional neural network Deep learning Malignant melanoma 

References

  1. 1.
    Sneyd, M.J., Cox, B.: A comparison of trends in melanoma mortality in New Zealand and Australia: the two countries with the highest melanoma incidence and mortality in the world. BMC Cancer 13(1), 372 (2013)Google Scholar
  2. 2.
    Stewart, B.W.K.P., Wild, C.P.: World Cancer Report 2014. Health (2017)Google Scholar
  3. 3.
    Siegel, R.L., Miller, K.D., Jemal, A.: Cancer statistics. CA Cancer J. Clin. 68, 7–30 (2018).  https://doi.org/10.3322/caac.21442Google Scholar
  4. 4.
    Balzi, D., Carli, P., Geddes, M.: Malignant melanoma in Europe: changes in mortality rates (1970–90) in European Community countries. Cancer Causes Control 8(1), 85–92 (1997)CrossRefGoogle Scholar
  5. 5.
    Celebi, M.E., et al.: A methodological approach to the classification of dermoscopy images. Comput. Med. Imaging Graph. 31(6), 362–373 (2007)CrossRefGoogle Scholar
  6. 6.
    Laskaris, N., et al.: Fuzzy description of skin lesions. In: Proceedings of SPIE, vol. 7627 (2010)Google Scholar
  7. 7.
    Ballerini, L., et al.: A color and texture based hierarchical K-NN approach to the classification of non-melanoma skin lesions. Color Medical Image Analysis, pp. 63–86. Springer, Dordrecht (2013)Google Scholar
  8. 8.
    LeCun, Y., et al.: Gradient-based learning applied to document recognition. In: Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324 (1998)CrossRefGoogle Scholar
  9. 9.
    Stolz, W., Riemann, A., Cognetta, A.B., Pillet, L., Abmayr, W., Holzel, D., Bilek, P., Nachbar, F., Landthaler, M., Braun-Falco, O.: ABCD rule of dermatoscopy: a new practical method for early recognition of malignant melanoma. Eur. J. Dermatol. 4, 521–527 (1994)Google Scholar
  10. 10.
    Argenziano, G., Fabbrocini, G., Carli, P., Giorgi, V.D., Sammarco, E., Delfino, M.: Epiluminescence microscopy for the diagnosis of doubtful melanocytic skin lesions: comparison of the ABCD rule of dermatoscopy and a new 7-point checklist based on pattern analysis. Arch. Dermatol. 134, 1563–1570 (1998)CrossRefGoogle Scholar
  11. 11.
    Henning, J., Dusza, S., Wang, S., Marghoob, A., Rabinovitz, H., Polsky, D., Kopf, A.: The CASH (colour, architecture, symmetry, and homogeneity) algorithm for dermoscopy. J. Am. Acad. Dermatol. 56(1), 45–52 (2007)CrossRefGoogle Scholar
  12. 12.
    Cavalcanti, P.G., Scharcanski, J.: Automated prescreening of pigmented skin lesions using standard cameras. Comput. Med. Imaging Graph. 35(6), 481–491 (2011)CrossRefGoogle Scholar
  13. 13.
    Celebi, M.E., et al.: A methodological approach to the classification of dermoscopy images. Comput. Med. Imaging Graph. 31(6), 362–373 (2007)CrossRefGoogle Scholar
  14. 14.
    Abuzaghleh, O., Barkana, B.D., Faezipour, M.: Noninvasive real-time automated skin lesion analysis system for melanoma early detection and prevention. IEEE J. Trans. Eng. Health Med. 3, 1–12 (2015)CrossRefGoogle Scholar
  15. 15.
    Abedini, M.A.N.I., et al.: Accurate and scalable system for automatic detection of malignant melanoma. Dermoscopy Image Analysis, pp. 293–343 (2015)Google Scholar
  16. 16.
    Amelard, R., et al.: High-level intuitive features (HLIFs) for intuitive skin lesion description. IEEE Trans. Biomed. Eng. 62(3), 820–831 (2015)CrossRefGoogle Scholar
  17. 17.
    Stanley, R.J., et al.: A fuzzy-based histogram analysis technique for skin lesion discrimination in dermatology clinical images. Comput. Med. Imaging Graph. 27(5), 387–396 (2003)CrossRefGoogle Scholar
  18. 18.
    Bi, L., et al.: Dermoscopic image segmentation via multistage fully convolutional networks. IEEE Trans. Biomed. Eng. 64(9), 2065–2074 (2017)CrossRefGoogle Scholar
  19. 19.
    Mendona, T., et al.: PH 2-A dermoscopic image database for research and benchmarking. In: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE (2013)Google Scholar
  20. 20.
    International Skin Imaging Collaboration: Melanoma Project Website. https://isic-archive.com
  21. 21.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems (2012)Google Scholar
  22. 22.
    Agostinelli, F., et al.: Learning activation functions to improve deep neural networks (2014). arXiv:1412.6830
  23. 23.
    Bi, L., et al.: Automated skin lesion segmentation via image-wise supervised learning and multi-scale superpixel based cellular automata. In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI). IEEE (2016)Google Scholar
  24. 24.
    Goodfellow, I., et al.: Deep Learning, vol. 1. MIT press, Cambridge (2016)Google Scholar
  25. 25.
    Hartmann, W.M.: Dimension reduction vs. variable selection. In: International Workshop on Applied Parallel Computing. Springer, Berlin, Heidelberg (2004)Google Scholar
  26. 26.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2014). arXiv:1409.1556
  27. 27.
    Guyon, I., Elisseeff, A.: An Introduction to Feature Extraction, pp. 1–25. Berlin, Heidelberg, Springer (2006)zbMATHGoogle Scholar
  28. 28.
    Peruch, F., et al.: Simpler, faster, more accurate melanocytic lesion segmentation through meds. IEEE Trans. Biomed. Eng. 61(2), 557–565 (2014)CrossRefGoogle Scholar
  29. 29.
    LaFleur-Brooks, M.: Exploring Medical Language: A Student-Directed Approach, 7th edn, p. 398. Mosby Elsevier, St. Louis, Missouri, US. ISBN 978-0-323-04950-4 (2008)Google Scholar
  30. 30.
    Lopez, A.R., et al.: Skin lesion classification from dermoscopic images using deep learning techniques. In: 2017 13th IASTED International Conference on Biomedical Engineering (BioMed). IEEE (2017)Google Scholar
  31. 31.
    Chawla, N.V.: Data mining for imbalanced datasets: an overview. Data Mining and Knowledge Discovery Handbook, pp. 875–886. Springer, Boston, MA (2009)CrossRefGoogle Scholar
  32. 32.
    Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.National Institute of Technology RaipurRaipurIndia

Personalised recommendations