Advertisement

Spark Streaming for Predictive Business Intelligence

  • M. V. KamalEmail author
  • P. Dileep
  • D. Vasumati
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 898)

Abstract

Apache spark can process the data in real time with the test mining and natural language processing. The business intelligence can be improved by collecting and processing the data from Web in real time. Process mining collects the data from event logs in process discovery and then diagnosis the difference between the observed and reality through event logs and extended the data of the event. Dealing with huge data process mining finds difficulty in processing. Spark handles the data processing speed and real time. It receives the input data and segregated into batches that put up in processing. The incoming data appended to the already existing data for processing. It identifies the problems and quickly reports generation of processing data.

Keywords

Spark Process mining Natural language processing Business intelligence 

References

  1. 1.
    Grover, M., Malaska, T., Seidman, J., Shapira, G.: Hadoop Application Architectures, 1st edn. O’Reilly, Sebastopol, CA (2015)Google Scholar
  2. 2.
    Caya, O., Bourdon, A.: A framework of value creation from business intelligence and analytics in competitive sports. In: 2016 49th Hawaii International Conference on System Sciences (HICSS)Google Scholar
  3. 3.
    Gutfreund, K.: Big data techniques for predictive business intelligence. J. Adv. Manage. Sci. 5(2) (2017)CrossRefGoogle Scholar
  4. 4.
    Van der Aalst, M.: Using Process Mining to Bridge the Gap between BI and BPM. Eindhoven University of Technology, The NetherlandsGoogle Scholar
  5. 5.
    Maheshwar, R.C., Haritha, D., Haritha, D.: Survey on high performance analytics of bigdata with apache spark. In: Advanced Communication Control and Computing Technologies (ICACCCT) (2016)Google Scholar
  6. 6.
    Wani, M.A., Jabin, S.: Big Data: Issues, Challenges and Techniques in Business IntelligenceGoogle Scholar
  7. 7.
    Avid Machine Learning Natural Language Processing—Concordance CG 5 August 2017Google Scholar
  8. 8.
    White, T.: Hadoop: The Definitive Guide, 3rd edn, pp. 11–12. O’Reilly, Sebastopol, CA (2012)Google Scholar
  9. 9.
    Pustejovsky, J.: Computational Linguistics, Brandeis University, 23 January 2015Google Scholar
  10. 10.
    Bhandarkar, M.: MapReduce programming with apache hadoop. In: Proceedings of 2010 IEEE International Symposium on Parallel & Distributed Processing, Atlanta, GA, April 2010Google Scholar
  11. 11.
    Chang, K.-W.: N-gram, CS @ University of Virginia (2016)Google Scholar
  12. 12.
    Karthika, I., Gokulraj, P., Saravanan, S.: Prediction of sales using big data analytics. J. Adv. Chem. 12(20)Google Scholar
  13. 13.
    Karthika, I., Priyadharshini, S.: Survey on location based sentiment analysis of twitter data. IJEDR 5(1) (2017). ISSN 2321-9939Google Scholar
  14. 14.
    Saravanan, S., Venkatachalam, V.: Advance map reduce task scheduling algorithm using mobile cloud multimedia services architecture. IEEE Dig. Explore pp. 21–25 (2014)Google Scholar
  15. 15.
    Saravanan, S., Venkatachalam, V.: Enhanced bosa for implementing map reduce task scheduling algorithm. Int. J. Appl. Eng. Res. 10(85), 60–65 (2015)Google Scholar
  16. 16.
    Manning, C., Schütze, H.: Foundations of statistical natural language processing, 2nd edn. MIT Press, Cambridge, MA (2000)zbMATHGoogle Scholar
  17. 17.
    Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster computing with working sets. In: Proceedings of HotCloud 2010, 2nd USENIX Workshop on Hot Topics in Cloud Computing, Boston, MA, 2010Google Scholar
  18. 18.
    Karau, H., Konwinski, A., Wendell, P., Zaharia, M.: Learning Spark, Lightning-Fast Big Data Analysis, 1st edn. O’Reilly, Sebastopol, CA (2015)Google Scholar
  19. 19.
    Turing, A.M.: Computing machinery and intelligence. Mind 59(236), 433–460 (1950)MathSciNetCrossRefGoogle Scholar
  20. 20.
    IBM Press Release. 701 Translator (Online), 8 Jan 1954. http://www-03.ibm.com/ibm/history/exhibits/701/701_translator.html
  21. 21.
    Manning, C., Schütze, H.: Foundations of Statistical Natural Language Processing, 2nd ed. MIT Press, Cambridge, MA, chap. 1.4.5, pp. 31–34 (2000)Google Scholar
  22. 22.
    Jurafsky, D., Martin, J.H.: Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speech Recognition, 2nd edn. Prentice Hall, Upper Saddle River, NJ (2008)Google Scholar
  23. 23.
    Karthika, I., Porkodi, K.P.: Fraud claim detection using spark. Int. J. Innov. Eng. Res. Technol. 4(2) (2017). ISSN 2394-3696Google Scholar
  24. 24.
    Karthika, I., Porkodi, K.P.: Automatic monitoring and controlling of weather condition using big data analytics. Int. J. Adv. Res. Comput. Commun. Eng. 6(1) (2017)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Jawaharlal Nehru Technological University, HyderabadHyderabadIndia
  2. 2.Andhra UniversityVishakapatanumIndia
  3. 3.Department of CSE, JNTUCEHJawaharlal Nehru Technological University, HyderabadHyderabadIndia

Personalised recommendations