Pharmacological Considerations in Neuroanesthesia

  • Sabine KreilingerEmail author
  • Eljim P. Tesoro


In addition to physiologic and anatomic considerations in neuroanesthesia practice, pharmacological issues that may affect drug disposition, dosing, and adverse effects must be addressed to prevent delayed emergence from anesthesia. Obesity, hypothermia, and renal and hepatic dysfunction can all affect patients’ response to anesthesia. Clinically relevant side effects unique to each agent must also be evaluated to prevent postoperative complications. Effects on cerebral hemodynamics should be utilized to provide anesthesia targeted to each patient’s pathology.


Opiates Benzodiazepines Propofol Volatile anesthetics Neuromuscular blockers Obesity Hypothermia Drug interactions 


  1. 1.
    Smit C, De Hoogd S, Bruggemann JM, Knibbe CAJ. Obesity and drug pharmacology: a review of the influence of obesity on pharmacokinetic and pharmacodynamics parameters. Expert Opin Drub Metab Toxicol. 2018;14:275–85.CrossRefGoogle Scholar
  2. 2.
    Casati A, Putzu M. Anesthesia in the obese patient: pharmacokinetic considerations. J Clin Anesth. 2005;17(2):134–45.CrossRefGoogle Scholar
  3. 3.
    De Baerdemaeker L, Margarson M. Best anaesthetic drug strategy for morbidly obese patients. Curr Opin Anaesthesiol. 2016;29(1):119–28.CrossRefGoogle Scholar
  4. 4.
    Galvin IM, Levy R, Boyd JG, Day AG, Wallace MC. Cooling for cerebral protection during brain surgery. Cochrane Database Syst Rev. 2015;28(1):CD006638.Google Scholar
  5. 5.
    Choi R, Andres RH, Steinberg GK, Guzman R. Intraoperative hypothermia during vascular neurosurgery procedures. Neurosurg Focus. 2009;26:E24–9.CrossRefGoogle Scholar
  6. 6.
    Leykin Y, Miotto L, Pellis T. Pharmacokinetic considerations in the obese. Best Pract Res Clin Anaesthesiol. 2011;25(1):27–36.CrossRefGoogle Scholar
  7. 7.
    Tortorici MA, Kochanek PM, Poloyac SM. Effects of hypothermia on drug disposition, metabolism, and response: a focus of hypothermia-mediated alterations on the cytochrome P450 enzyme system. Crit Care Med. 2007;35(9):2196–204.CrossRefGoogle Scholar
  8. 8.
    Bjelland TW, Klepstad P, Haugen BO, Nilsen T, Dale O. Effects of hypothermia on the disposition of morphine, midazolam, fentanyl, and propofol in intensive care unit patients. Drug Metab Dispos. 2013;41(1):214–23.CrossRefGoogle Scholar
  9. 9.
    Anderson KB, Poloyac SM, Kochanek PM, Empey PE. Effect of hypothermia and targeted temperature management on drug disposition and response following cardiac arrest: a comprehensive review of preclinical and clinical investigations. Ther Hypothermia Temp Manag. 2016;6(4):169–79.CrossRefGoogle Scholar
  10. 10.
    Bjelland TW, Klepstad P, Haugen BO, Nilsen T, Salvesen O, Dale O. Concentrations of remifentanil, propofol, fentanyl, and midazolam during rewarming from therapeutic hypothermia. Acta Anaesthesiol Scand. 2014;58:709–15.CrossRefGoogle Scholar
  11. 11.
    Šunjić KM, Webb AC, Šunjić I, Palà Creus M, Folse SL. Pharmacokinetic and other considerations for drug therapy during targeted temperature management. Crit Care Med. 2015;43(10):2228–38.CrossRefGoogle Scholar
  12. 12.
    Fudickar A, Bein B, Tonner PH. Propofol infusion syndrome in anaesthesia and intensive care medicine. Curr Opin Anaesthesiol. 2006;19(4):404–10.CrossRefGoogle Scholar
  13. 13.
    Ilyas MI, Balacumaraswami L, Palin C, Ratnatunga C. Propofol infusion syndrome in adult cardiac surgery. Ann Thorac Surg. 2009;87(1):e1–3.CrossRefGoogle Scholar
  14. 14.
    Liolios A, Guérit JM, Scholtes JL, Raftopoulos C, Hantson P. Propofol infusion syndrome associated with short-term large-dose infusion during surgical anesthesia in an adult. Anesth Analg. 2005;100(6):1804–6.CrossRefGoogle Scholar
  15. 15.
    Bowdle A, Richebe P, Lee L, Rostomily R, Gabikian P. Hypertriglyceridemia, lipemia, and elevated liver enzymes associated with prolonged propofol anesthesia for craniotomy. Ther Drug Monit. 2014;36:556–9.CrossRefGoogle Scholar
  16. 16.
    Jellish WS, Edelstein S. Neuroanesthesia. In: Biller J, Ferro JM, editors. Handbook of clinical neurology. Amsterdam: Elselvier; 2014. p. 1623–33.Google Scholar
  17. 17.
    Stachnik J. Inhaled anesthetic agents. Am J Health Syst Pharm. 2006;63:623–34.CrossRefGoogle Scholar
  18. 18.
    Dinsmore J. Anaesthesia for elective neurosurgery. Br J Anaesth. 2007;99:68–74.CrossRefGoogle Scholar
  19. 19.
    Gupta S, Heath K, Matta BF. Effect of incremental doses of sevoflurane on cerebral pressure autoregulation in humans. Br J Anaesth. 1997;79:469–72.CrossRefGoogle Scholar
  20. 20.
    Petersen KD, Landsfeldt U, Cold GE, et al. Intracranial pressure and cerebral hemodynamics in patients with cerebral tumors. Anesthesiology. 2003;98:329–36.CrossRefGoogle Scholar
  21. 21.
    Hans P, Bonhomme V. Why we still use intravenous drugs as the basic regimen for neurosurgical anaesthesia. Curr Opin Anaesthesiol. 2006;19:498–503.CrossRefGoogle Scholar
  22. 22.
    Cammu G, Coddens J, Hendrickx J, Deloof T. Dose requirements of infusions of cisatracurium or rocuronium during hypothermic cardiopulmonary bypass. Br J Anaesth. 2000;84:587–90.CrossRefGoogle Scholar
  23. 23.
    Beaufort AM, Wierda JM, Belopavlovic M, Nederveen PJ, Kleef UW, Agoston S. The influence of hypothermia (surface cooling) on the time-course of action and on the pharmacokinetics of rocuronium in humans. Eur J Anaesthesiol Suppl. 1995;11:95–106.PubMedGoogle Scholar
  24. 24.
    Caldwell JE, Heier T, Wright P, et al. Temperature-dependent pharmacokinetics and pharmacodynamics of vecuronium. Anesthesiology. 2000;92:84–93.CrossRefGoogle Scholar
  25. 25.
    Wheless JW, Clarke D, Hovinga CA, Ellis M, Durmeier M, McGregor A, Perkins F. Rapid infusion of a loading dose of intravenous levetiracetam with minimal dilution: a safety study. J Child Neurol. 2009;24(8):946–51.CrossRefGoogle Scholar
  26. 26.
    Voldby B, Enevoldsen EM, Jensen FT. Cerebrovascular reactivity in patients with ruptured intracranial aneurysms. J Neurosurg. 1985;62:59–67.CrossRefGoogle Scholar
  27. 27.
    Saito S, Kadoi Y, Nara T, Sudo M, Obata H, Morita T, et al. The comparative effects of propofol versus thiopental on middle cerebral artery blood flow velocity during electroconvulsive therapy. Anesth Analg. 2000;91:1531–6.CrossRefGoogle Scholar
  28. 28.
    Woods AW, Allam S. Tracheal intubation without the use of neuromuscular blocking agents. Br J Anaesth. 2005;94:150–8.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of AnesthesiologyUniversity of Illinois at ChicagoChicagoUSA
  2. 2.Department of Pharmacy PracticeUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations