Pediatric Neuroanesthesia

  • Jue T. Wang
  • Craig McClainEmail author


Children undergoing a variety of neurosurgical procedures present a unique set of challenges to the anesthesiologist caring for these patients. Anesthesiologists must have a clear understanding of not only basic human neurophysiology but also normal and abnormal human motor and cognitive development. Children are not simply small adults, as evidenced by differences in pharmacokinetics, pharmacodynamics, physiologic responses to varying normal and pathologic situations, and demonstration of allometric scaling. Application of these principles informs good clinical care of children for surgical treatment of neurologic disease. This chapter will highlight these aspects of essential clinical care. Further, aspects of pediatric care including discussions of current thinking on cerebral autoregulation, anesthetic induced neurodegeneration, and common clinical situation in pediatric neuroanesthesia will be highlighted.


Intracranial compartments Intracranial pressure Herniation syndromes Cranial nerve deficit Cerebral spinal fluid Anesthesia management Venous air embolus Hydrocephalus Congenital anomalies Tumors Trauma 


  1. 1.
    Arieff AI, Ayus JC, Fraser CL. Hyponatraemia and death or permanent brain damage in healthy children. BMJ. 1992;304:1218–22.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Bruce DA, Berman WA, Schut L. Cerebrospinal fluid pressure monitoring in children: physiology, pathology and clinical usefulness. Adv Pediatr Infect Dis. 1977;24:233–90.Google Scholar
  3. 3.
    Marshall LF, Smith RW, Shapiro HM. The influence of diurnal rhythms in patients with intracranial hypertension: implications for management. Neurosurgery. 1978;2:100–2.PubMedCrossRefGoogle Scholar
  4. 4.
    Hanlon K. Description and uses of intracranial pressure monitoring. Heart Lung. 1976;5:277–82.PubMedGoogle Scholar
  5. 5.
    Lundberg N, Troupp H, Lorin H. Continuous recording of the ventricular-fluid pressure in patients with severe acute traumatic brain injury: a preliminary report. J Neurosurg. 1965;22:581–90.PubMedCrossRefGoogle Scholar
  6. 6.
    Coroneos NJ, McDowall DG, Pickerodt VW, Keaney NP, Gibson RM. A comparison of intracranial extradural pressure with subarachnoid pressure. Br J Anaesth. 1971;43:1198.PubMedGoogle Scholar
  7. 7.
    Ream AK, Silverberg GD, Corbin SD, Schmidt EV, Fyer TB. Epidural measurement of intracranial pressure. Neurosurgery. 1979;5:36–43.PubMedCrossRefGoogle Scholar
  8. 8.
    Levin AB, Kahn AR, Bahr DE. Epidural intracranial pressure monitoring: a new system. Med Instrum. 1983;17:293–6.PubMedGoogle Scholar
  9. 9.
    Minns RA, Brown JK, Engleman HM. CSF production rate: “real time” estimation. Z Kinderchir. 1987;42:36–40.PubMedGoogle Scholar
  10. 10.
    Blomquist HK, Sundin S, Ekstedt J. Cerebrospinal fluid hydrodynamic studies in children. J Neurol Neurosurg Psychiatry. 1986;49(5):536–48.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Shapiro HM. Intracranial hypertension: therapeutic and anesthetic considerations. Anesthesiology. 1975;43:445–71.PubMedCrossRefGoogle Scholar
  12. 12.
    Rubin RC, Henderson ES, Ommaya AK, Walker MD, Rall DP. The production of cerebrospinal fluid in man and its modification by acetazolamide. J Neurosurg. 1966;25:430–6.PubMedCrossRefGoogle Scholar
  13. 13.
    Clasen RA, Pandolfi S, Casey DJ. Furosemide and pentobarbital in cryogenic cerebral injury and edema. Neurology. 1974;24(7):642–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Lassen NA, Christensen MS. Physiology of cerebral blood flow. Br J Anaesth. 1976;48:719–34.PubMedCrossRefGoogle Scholar
  15. 15.
    Lassen NA, Hoedt-Rasmussen K. Human cerebral blood flow measured by two inert gas techniques: comparison of the Kety-Schmidt method and the intra-arterial injection method. Circ Res. 1966;19:681–94.PubMedCrossRefGoogle Scholar
  16. 16.
    Kety SS, Schmidt CF. The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure, and normal values. J Clin Invest. 1948;27:476–83.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Cross KW, Dear PR, Hathorn MK, et al. An estimation of intracranial blood flow in the new-born infant. J Physiol Lond. 1979;289:329–45.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Younkin DP, Reivich M, Jaggi J, et al. Noninvasive method of estimating human newborn regional cerebral blood flow. J Cereb Blood Flow Metab. 1982;2:415–20.PubMedCrossRefGoogle Scholar
  19. 19.
    Kennedy C, Sokoloff L. An adaptation of the nitrous oxide method to the study of cerebral circulation in children: normal values for cerebral blood flow and cerebral metabolic rate in childhood. J Clin Invest. 1957;36:1130–7.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Kety SS, Schmidt CF. The effects of altered arterial tensions of carbon dioxide and oxygen on cerebral blood flow and cerebral oxygen consumption in normal young men. J Clin Invest. 1948;27:484–92.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Rahilly PM. Effects of 2% carbon dioxide, 0.5% carbon dioxide, and 100% oxygen on cranial blood flow of the human neonate. Pediatrics. 1980;66:685–9.PubMedGoogle Scholar
  22. 22.
    Coles JP, Fryer TD, Coleman MR, et al. Hyperventilation following head injury: effect on ischemic burden and cerebral oxidative metabolism. Crit Care Med. 2007;35:568–78.PubMedCrossRefGoogle Scholar
  23. 23.
    Marion DW, Firlik A, McLaughlin MR. Hyperventilation therapy for severe traumatic brain injury. New Horiz. 1995;3:439–47.PubMedGoogle Scholar
  24. 24.
    Skippen P, Seear M, Poskitt K, et al. Effect of hyperventilation on regional cerebral blood flow in head-injured children. Crit Care Med. 1997;25:1402–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Holzman RS. Clinical management of latex-allergic children. Anesth Analg. 1997;85:529–33.PubMedCrossRefGoogle Scholar
  26. 26.
    Shapiro HM, Galindo A, Wyte SR, Harris AB. Rapid intraoperative reduction of intracranial pressure with thiopentone. Br J Anaesth. 1973;45:1057–62.PubMedCrossRefGoogle Scholar
  27. 27.
    Abou-Madi MN, Keszler H, Yacoub JM. Cardiovascular reactions to laryngoscopy and tracheal intubation following small and large intravenous doses of lidocaine. Can Anaesth Soc J. 1977;24:12–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Lockhart CH, Jenkins JJ. Ketamine-induced apnea in patients with increased intracranial pressure. Anesthesiology. 1972;37:92–3.PubMedCrossRefGoogle Scholar
  29. 29.
    Crumrine RS, Nulsen FE, Weiss MH. Alterations in ventricular fluid pressure during ketamine anesthesia in hydrocephalic children. Anesthesiology. 1975;42:758–61.PubMedCrossRefGoogle Scholar
  30. 30.
    Baker KZ. Desflurane and sevoflurane are valuable additions to the practice of neuroanesthesiology: pro. J Neurosurg Anesthesiol. 1997;9:66–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Tempelhoff R. The new inhalational anesthetics desflurane and sevoflurane are valuable additions to the practice of neuroanesthesia: con. J Neurosurg Anesthesiol. 1997;9:69–71.PubMedCrossRefGoogle Scholar
  32. 32.
    Scheller MS, Tateishi A, Drummond JC, Zornow MH. The effects of sevoflurane on cerebral blood flow, cerebral metabolic rate for oxygen, intracranial pressure, and the electroencephalogram are similar to those of isoflurane in the rabbit. Anesthesiology. 1988;68:548–51.PubMedCrossRefGoogle Scholar
  33. 33.
    Jääskeläinen SK, Kaisti K, Suni L, Hinka S, Scheinin H. Sevoflurane is epileptogenic in healthy subjects at surgical levels of anesthesia. Neurology. 2003;61:1073–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Mazurek AJ, Rae B, Hann S, et al. Rocuronium versus succinylcholine: are they equally effective during rapid-sequence induction of anesthesia? Anesth Analg. 1998;87:1259–62.PubMedGoogle Scholar
  35. 35.
    Lee LA, Roth S, Posner KL, et al. The American Society of Anesthesiologists Postoperative Visual Field Loss Registry: analysis of 93 spine cases with postoperative visual loss. Anesthesiology. 2006;105:652–9.PubMedCrossRefGoogle Scholar
  36. 36.
    American Society of Anesthesiologists Task Force on Perioperative Visual Loss. Practice advisory for perioperative visual loss associated with spine surgery: a report by the American Society of Anesthesiologists Task force on perioperative blindness. Anesthesiology. 2006;104:1319–28.CrossRefGoogle Scholar
  37. 37.
    Scheller MS, Nakakimura K, Fleischer JE, Zornow MH. Cerebral effects of sevoflurane in the dog: comparison with isoflurane and enflurane. Br J Anaesth. 1990;65:388–92.PubMedCrossRefGoogle Scholar
  38. 38.
    Ikonomidou C, Bosch F, Miksa M, et al. Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. Science. 1999;283:70–4.PubMedCrossRefGoogle Scholar
  39. 39.
    Jevtovic-Todorovic V, Hartman RE, Izumi Y, et al. Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits. J Neurosci. 2003;23:876–82.PubMedCrossRefGoogle Scholar
  40. 40.
    Slikker W Jr, Zou X, Hotchkiss CE, et al. Ketamine-induced neuronal cell death in the perinatal rhesus monkey. Toxicol Sci. 2007;98:145–58.PubMedCrossRefGoogle Scholar
  41. 41.
    Sall J. Anesthesia kills brain cells, but what does it mean? Anesthesiology. 2016;12(125):1090–1.CrossRefGoogle Scholar
  42. 42.
    Sun L, Li G, Miller T, et al. Association between a single general anesthesia exposure before age 36 months and neurocognitive outcomes in later childhood. JAMA. 2016;315(21):2312–20.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Scheingraber S, Rehm M, Sehmisch C, Finsterer U. Rapid saline infusion produces hyperchloremic acidosis in patients undergoing gynecologic surgery. Anesthesiology. 1999;90:1265–70.PubMedCrossRefGoogle Scholar
  44. 44.
    Wass CT, Lanier WL. Glucose modulation of ischemic brain injury. review and clinical recommendations. Mayo Clin Proc. 1996;71:801–12.PubMedCrossRefGoogle Scholar
  45. 45.
    Harris MM, Yemen TA, Davidson A, et al. Venous embolism during craniectomy in supine infants. Anesthesiology. 1987;67:816–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Schafer ST, Lindemann J, Brendt P, Kaiser G, Peters J. Intracardiac transvenous echocardiography is superior to both precordial Doppler and transesophgeal echocardiography techniques for detecting venous air embolism and cather-guided air aspiration. Anesth Analg. 2008;106:45–54.PubMedCrossRefGoogle Scholar
  47. 47.
    Glenski JA, Cucchiara RF, Michenfelder JD. Transesophageal echocardiography and transcutaneous O2 and CO2 monitoring for detection of venous air embolism. Anesthesiology. 1986;64:541–5.PubMedCrossRefGoogle Scholar
  48. 48.
    Moynihan RJ, Brock-Utne JG, Archer JH, Feld LH, Kreitzman TR. The effect of cricoid pressure on preventing gastric insufflation in infants and children. Anesthesiology. 1993;78:652–6.PubMedCrossRefGoogle Scholar
  49. 49.
    Goumnerova LC, Frim DM. Treatment of hydrocephalus with third ventriculocisternostomy: outcome and CSF flow patterns. Pediatr Neurosurg. 1997;27:149–52.PubMedCrossRefGoogle Scholar
  50. 50.
    Kulkarni A, Schiff S, Mbabazi-Kabachelor E, et al. Endoscopic treatment versus shunting for infant hydrocephalus in Uganda. N Engl J Med. 2017;377:2456–64.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Eldredge EA, Rockoff MA, Medlock MD, Scott RM, Millis MB. Postoperative cerebral edema occurring in children with slit ventricles. Pediatrics. 1997;99:625–30.PubMedCrossRefGoogle Scholar
  52. 52.
    Sutton LN, Adzick NS, Bilaniuk LT, et al. Improvement in hindbrain herniation demonstrated by serial fetal magnetic resonance imaging following fetal surgery for myelomeningocele. JAMA. 1999;282:1826–31.PubMedCrossRefGoogle Scholar
  53. 53.
    Bruner JP, Tulipan N, Paschall RL, et al. Fetal surgery for myelomeningocele and the incidence of shunt-dependent hydrocephalus. JAMA. 1999;282:1819–25.PubMedCrossRefGoogle Scholar
  54. 54.
    Adzick NS, Thom EA, Spong CY, et al. A randomized trial of prenatal versus postnatal repair of myelomeningocele. N Engl J Med. 2011;364:993–1004.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Dierdorf SF, McNiece WL, Rao CC, Wolfe TM, Means LJ. Failure of succinylcholine to alter plasma potassium in children with myelomeningocoele. Anesthesiology. 1986;64:272–3.PubMedCrossRefGoogle Scholar
  56. 56.
    Birmingham PK, Dsida RM, Grayhack JJ, et al. Do latex precautions in children with myelodysplasia reduce intraoperative allergic reactions? J Pediatr Orthop. 1996;16:799–802.PubMedCrossRefGoogle Scholar
  57. 57.
    Oren J, Kelly DH, Todres ID, Shannon DC. Respiratory complications in patients with myelodysplasia and Arnold-Chiari malformation. Am J Dis Child. 1986;140:221–4.PubMedGoogle Scholar
  58. 58.
    Ward SL, Nickerson BG, van der Hal A, et al. Absent hypoxic and hypercapneic arousal responses in children with myelomeningocele and apnea. Pediatrics. 1986;78:44–50.PubMedGoogle Scholar
  59. 59.
    Pollack IF. Brain tumors in children. N Engl J Med. 1994;331:1500–7.PubMedCrossRefGoogle Scholar
  60. 60.
    Kissoon N, Dreyer J, Walia M. Pediatric trauma: differences in pathophysiology, injury patterns and treatment compared with adult trauma. Can Med Assoc J. 1990;142:27–34.Google Scholar
  61. 61.
    Pascucci RC. Head trauma in the child. Intensive Care Med. 1988;14(3):185–95.PubMedCrossRefGoogle Scholar
  62. 62.
    Bruce DA, Raphaely RC, Goldberg AI, et al. Pathophysiology, treatment and outcome following severe head injury in children. Childs Brain. 1979;5:174–91.PubMedGoogle Scholar
  63. 63.
    Bruce DA, Alavi A, Bilaniuk L, et al. Diffuse cerebral swelling following head injuries in children: the syndrome of “malignant brain edema”. J Neurosurg. 1981;54:170–8.PubMedCrossRefGoogle Scholar
  64. 64.
    Rahimi-Movaghar V, Boroojeny SB, Moghtaderi A, Keshmiran B. Intracranial placement of a nasogastric tube: a lesson to be re-learnt? Acta Neurochir. 2005;147:573–4.PubMedCrossRefGoogle Scholar
  65. 65.
    Cornett MA, Paris A Jr, Huang TY. Intracranial placement of a nasogastric tube. Am J Emerg Med. 1993;11:94–6.PubMedCrossRefGoogle Scholar
  66. 66.
    Fremstad JD, Martin SH. Lethal complication from insertion of nasogastric tube after severe basilar skull fracture. J Trauma. 1978;18:820–2.PubMedCrossRefGoogle Scholar
  67. 67.
    Millar C, Bissonnette B, Humphreys RP. Cerebral arteriovenous malformations in children. Can J Anaesth. 1994;41:321–31.PubMedCrossRefGoogle Scholar
  68. 68.
    Ostergaard JR, Voldby B. Intracranial arterial aneurysms in children and adolescents. J Neurosurg. 1983;58:832–7.PubMedCrossRefGoogle Scholar
  69. 69.
    Salem MR, Wong AY, Bennett EJ, Mani M. Deliberate hypotension in infants and children. Anesth Analg. 1974;53:975–81.PubMedCrossRefGoogle Scholar
  70. 70.
    Suzuki J, Takaku A. Cerebrovascular “moyamoya” disease: disease showing abnormal net-like vessels in base of brain. Arch Neurol. 1969;20:288–99.PubMedCrossRefGoogle Scholar
  71. 71.
    Smith ER, McClain CD, Heeney M, Scott RM. Pialsynangiosis in patients with moyamoya disease and sickle cell anemia: perioperative management and surgical outcome. Neurosurg Focus. 2009;26:E10.PubMedCrossRefGoogle Scholar
  72. 72.
    Adelson PD, Scott RM. Pialsynangiosis for moyamoya syndrome in children. Pediatr Neurosurg. 1995;23:26–33.PubMedCrossRefGoogle Scholar
  73. 73.
    Soriano SG, Sethna NF, Scott RM. Anesthetic management of children with moyamoya syndrome. Anesth Analg. 1993;77:1066–70.PubMedCrossRefGoogle Scholar
  74. 74.
    Takeuchi S, Tanaka R, Ishii R, et al. Cerebral hemodynamics in patients with moyamoya disease: a study of regional cerebral blood flow by the 133Xe inhalation method. Surg Neurol. 1985;23:468–74.PubMedCrossRefGoogle Scholar
  75. 75.
    Reasoner DK, Todd MM, Scamman FL, Warner DS. The incidence of pneumocephalus after supratentorial craniotomy: observations on the disappearance of intracranial air. Anesthesiology. 1994;80:1008–12.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Anesthesiology, Critical Care and Pain MedicineBoston Children’s HospitalBostonUSA
  2. 2.Department of Anesthesiology, Critical Care and Pain MedicineHarvard Medical School, Boston Children’s HospitalBostonUSA

Personalised recommendations