Co-Existing Hypertension in Neurosurgery

  • Ramamani MariappanEmail author
  • Rajasekar Arumugam


Hypertension is a common medical problem which affects almost all organs in the body. Among which, the brain is the major target organ for the adverse effects of untreated hypertension followed by the cardiovascular and renal system. It is a major risk factor for stroke and its related morbidity and also a powerful risk factor for cognitive decline, dementia, and Alzheimer’s disease. Perioperative hypertension is a common event in neurosurgical population due to the activation of sympathetic nervous system activity, renin-angiotensin-aldosterone activity, and interaction between the heart and brain which increases the perioperative morbidity and mortality. The presence of pre-existing hypertension is one of the major risk factors for the development of a postoperative hematoma after craniotomy. Congenital variation in the circle of Willis and vertebral artery leading to medullary ischemia is considered to be the cause for the development of essential hypertension. Pulsatile compression of vessels on the brain stem and cranial nerves can cause neurogenic hypertension. In this chapter, classification of hypertension and its causes, pathophysiology, the brain-heart interaction, preoperative evaluation, various causes of perioperative hypertension, and its management are discussed in detail.


Hypertension in neurosurgery Neurogenic hypertension Cerebrovascular remodeling Cerebral autoregulation Brain-heart interaction Preoperative evaluation Perioperative hypertension and its management 


  1. 1.
    Nadella V, Howell SJ. Hypertension: pathophysiology and perioperative implications. Contin Educ Anaesth Crit Care Pain. 2015;15(6):275–9.Google Scholar
  2. 2.
    Marik PE, Varon J. Perioperative hypertension: a review of current and emerging therapeutic agents. J Clin Anesth. 2009;21(3):220–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Messerli FH, Williams B, Ritz E. Essential hypertension. Lancet. 2007;370(9587):591–603.PubMedCrossRefGoogle Scholar
  4. 4.
    Iadecola C, Davisson RL. Hypertension and cerebrovascular dysfunction. Cell Metab. 2008;7(6):476–84.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Kelley BJ, Petersen RC. Alzheimer’s Disease and mild cognitive impairment. Neurol Clin. 2018;25(3):577–v.CrossRefGoogle Scholar
  6. 6.
    van der Wall EE. The brain-heart connection: a round trip. Neth Hear J. 2018;19(6):269–70.CrossRefGoogle Scholar
  7. 7.
    Ardell JL, Andresen MC, Armour JA, Billman GE, Chen P-S, Foreman RD, et al. Translational neurocardiology: preclinical models and cardioneural integrative aspects. J Physiol. 2016;594(14):3877–909.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Banki NM, Kopelnik A, Dae MW, Miss J, Tung P, Lawton MT, et al. Acute neurocardiogenic injury after subarachnoid hemorrhage. Circulation. 2005;112(21):3314–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Rabelo NN, Filho LJS, dos Passos GS, Junior LAAD, Pereira CU, Dias LAA, et al. Acute arterial hypertension in patients undergoing neurosurgery. Arq Bras Neurocir. 2016;35(4):296–303.CrossRefGoogle Scholar
  10. 10.
    Prevention of stroke by antihypertensive drug treatment in older persons with isolated systolic hypertension. Final results of the Systolic Hypertension in the Elderly Program (SHEP). SHEP Cooperative Research Group. JAMA. 1991;265(24):3255–64.Google Scholar
  11. 11.
    James PA, Oparil S, Carter BL, Cushman WC, Dennison-Himmelfarb C, Handler J, et al. 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA. 2014;311(5):507–20.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    The fifth report of the Joint National Committee on Detection. Evaluation, and treatment of high blood pressure (JNC V). Arch Intern Med. 1993;153(2):154–83.CrossRefGoogle Scholar
  13. 13.
    Marik PE, Rivera R. Hypertensive emergencies: an update. Curr Opin Crit Care. 2011;17(6):569–80.PubMedCrossRefGoogle Scholar
  14. 14.
    Nowicki KW, Jennings R, Sekula RF. Brainstem hypoperfusion as the inciting factor in the development of essential hypertension. Neurosurgery. 2018;82(3):N20–1.PubMedCrossRefGoogle Scholar
  15. 15.
    Yavagal DR, Atchaneeyasakul K. Cerebrovascular variants in posterior circulation: a potential cause of essential hypertension. Circ Res. 2016;119(12):1267–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Warnert EAH, Rodrigues JCL, Burchell AE, Neumann S, Ratcliffe LEK, Manghat NE, et al. Is high blood pressure self-protection for the brain? Circ Res. 2016;119(12):e140–51.PubMedCrossRefGoogle Scholar
  17. 17.
    Sandell T, Holmen J, Eide PK. Hypertension in patients with cranial nerve vascular compression syndromes and comparison with a population-based cohort. J Neurosurg. 2013;119(5):1302–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Legrady P, Voros E, Bajcsi D, Fejes I, Barzo P, Abraham G. Observations of changes of blood pressure before and after neurosurgical decompression in hypertensive patients with different types of neurovascular compression of brain stem. Kidney Blood Press Res. 2013;37(4–5):451–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Baumbach GL, Heistad DD. Cerebral circulation in chronic arterial hypertension. Hypertension. 1988;12(2):89–95.PubMedCrossRefGoogle Scholar
  20. 20.
    De Silva TM, Faraci FM. Effects of angiotensin II on the cerebral circulation: role of oxidative stress. Front Physiol. 2013;3:484.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Jennings JR, Muldoon MF, Price J, Christie IC, Meltzer CC. Cerebrovascular support for cognitive processing in hypertensive patients is altered by blood pressure treatment. Hypertension. 2008;52(1):65–71.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Samson AL, Nevin ST, Croucher D, Niego B, Daniel PB, Weiss TW, et al. Tissue-type plasminogen activator requires a co-receptor to enhance N-Methyl-D-Aspartate receptor function. J Neurochem. 2008;107(4):1091–101.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Paulson OB, Strandgaard S, Edvinsson L. Cerebral autoregulation. Cerebrovasc Brain Metab Rev. 1990;2(2):161–92.PubMedGoogle Scholar
  24. 24.
    Matsushita K, Kuriyama Y, Nagatsuka K, Nakamura M, Sawada T, Omae T. Periventricular white matter lucency and cerebral blood flow autoregulation in hypertensive patients. Hypertension. 1994;23(5):565–8.PubMedCrossRefGoogle Scholar
  25. 25.
    O’Leary R, McKinlay J. Neurogenic pulmonary oedema. Contin Educ Anaesth Crit Care Pain. 2011;11(3):87–92.CrossRefGoogle Scholar
  26. 26.
    Davison DL, Terek M, Chawla LS. Neurogenic pulmonary edema. Crit Care. 2012;16(2):212.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Macmillan CSA, Grant IS, Andrews PJD. Pulmonary and cardiac sequelae of subarachnoid haemorrhage: time for active management? Intensive Care Med. 2002;28(8):1012–23.PubMedCrossRefGoogle Scholar
  28. 28.
    Bahloul M, Chaari AN, Kallel H, Khabir A, Ayadi A, Charfeddine H, et al. Neurogenic pulmonary edema due to traumatic brain injury: evidence of cardiac dysfunction. Am J Crit Care. 2006;15(5):462–70.PubMedGoogle Scholar
  29. 29.
    Baumann A, Audibert G, McDonnell J, Mertes PM. Neurogenic pulmonary edema. Acta Anaesthesiol Scand. 2007;51(4):447–55.PubMedCrossRefGoogle Scholar
  30. 30.
    Aneja A, Arora N, Sanjeev R, Semalti K. Neurogenic pulmonary edema following status epilepticus: an unusual case. Int J Clin Pediatr. 2015;4(4):186–8.CrossRefGoogle Scholar
  31. 31.
    Fontes RBV, Aguiar PH, Zanetti MV, Andrade F, Mandel M, Teixeira MJ. Acute neurogenic pulmonary edema: case reports and literature review. J Neurosurg Anesthesiol. 2003;15(2):144–50.PubMedCrossRefGoogle Scholar
  32. 32.
    Sedý J, Zicha J, Kunes J, Jendelová P, Syková E. Mechanisms of neurogenic pulmonary edema development. Physiol Res. 2008;57(4):499–506.PubMedGoogle Scholar
  33. 33.
    Goldstein DS. Sympathetic neuroimaging. Handb Clin Neurol. 2013;117:365–70.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Lizarraga KJ, Gorgulho A, Chen W, De Salles AA. Molecular imaging of movement disorders. World J Radiol. 2016;8(3):226–39.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Nagai M, Hoshide S, Kario K. The insular cortex and cardiovascular system: a new insight into the brain-heart axis. J Am Soc Hypertens. 2010;4(4):174–82.PubMedCrossRefGoogle Scholar
  36. 36.
    Constantinescu V, Detante O, Matei D, Constantinescu I, Arsenescu-Georgescu C, Defaye P, et al. Cortical lateralization and cardiac autonomic control. Insights from insular stroke and epilepsy. Arch Clin Cases. 2017;4(3):154–68.CrossRefGoogle Scholar
  37. 37.
    Pirracchio R, Cholley B, De Hert S, Solal AC, Mebazaa A. Diastolic heart failure in anaesthesia and critical care. Br J Anaesth. 2007;98(6):707–21.PubMedCrossRefGoogle Scholar
  38. 38.
    Kelley BJ, Petersen RC. Alzheimer’s disease and mild cognitive impairment. Neurol Clin. 2007;25(3):577–609.. v.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Bösel J. Blood pressure control for acute severe ischemic and hemorrhagic stroke. Curr Opin Crit Care. 2017;23(2):81–6.PubMedCrossRefGoogle Scholar
  40. 40.
    Jauch EC, Saver JL, Adams HP, Bruno A, Connors JJB, Demaerschalk BM, et al. Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2013;44(3):870–947.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Hemphill JC, Greenberg SM, Anderson CS, Becker K, Bendok BR, Cushman M, et al. Guidelines for the management of spontaneous intracerebral hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2015;46:2032–60.PubMedCrossRefGoogle Scholar
  42. 42.
    Connolly ES, Rabinstein AA, Carhuapoma JR, Derdeyn CP, Dion J, Higashida RT, et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2012;43(6):1711–37.CrossRefGoogle Scholar
  43. 43.
    Schubert A. Cardiovascular therapy of neurosurgical patients. Best Pract Res Clin Anaesthesiol. 2007;21(4):483–96.PubMedCrossRefGoogle Scholar
  44. 44.
    Prabhakar H, Sandhu K, Bhagat H, Durga P, Chawla R. Current concepts of optimal cerebral perfusion pressure in traumatic brain injury. J Anaesthesiol Clin Pharmacol. 2014;30(3):318–27.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Abou El Fadl MH, O’Phelan KH. Management of traumatic brain injury: an update. Neurol Clin. 2017;35(4):641–53.PubMedCrossRefGoogle Scholar
  46. 46.
    Brain Trauma Foundation. Guidelines for the management of severe TBI, 4th ed. Accessed 19 May 2018.
  47. 47.
    Verma R, Giri P, Rizvi I. Paroxysmal sympathetic hyperactivity in neurological critical care. Indian J Crit Care Med. 2015;19(1):34.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Rabinstein AA. Paroxysmal sympathetic hyperactivity in the neurological intensive care unit. Neurol Res. 2007;29(7):680–2.PubMedCrossRefGoogle Scholar
  49. 49.
    Hoxha A, Demneri M, Pilika K, Gjini O, Filipi N, Saraçi M, et al. Postoperative hypertension after craniotomy and catecholamine secretion: A-315. Eur J Anaesthesiol. 2005;22:84.Google Scholar
  50. 50.
    Olsen KS, Pedersen CB, Madsen JB, Ravn LI, Schifter S. Vasoactive modulators during and after craniotomy: relation to postoperative hypertension. J Neurosurg Anesthesiol. 2002;14(3):171–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Chowdhury T, Meuwly C, Sandu N, Cappellani RB, Schaller B. Coronary spasm in neurosurgical patients and role of trigeminocardiac reflex. Neurol Res Int. 2014;2014:974930.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Fleisher LA, Beckman JA, Brown KA, Calkins H, Chaikof E, Fleischmann KE, et al. ACC/AHA 2007 guidelines on perioperative cardiovascular evaluation and care for noncardiac surgery: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 2002 Guidelines on Perioperative Cardiovascular Evaluation for Noncardiac Surgery): developed in collaboration with the American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Rhythm Society, Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, and Society for Vascular Surgery. Circulation. 2007;116(17):e418–99.PubMedGoogle Scholar
  53. 53.
    Basali A, Mascha EJ, Kalfas I, Schubert A. Relation between perioperative hypertension and intracranial hemorrhage after craniotomy. Anesthesiology. 2000;93(1):48–54.PubMedCrossRefGoogle Scholar
  54. 54.
    Desai VR, Grossman R, Sparrow H. Incidence of intracranial hemorrhage after a cranial operation. Cureus. 2016;8(5):e616.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Seifman MA, Lewis PM, Rosenfeld JV, Hwang PYK. Postoperative intracranial haemorrhage: a review. Neurosurg Rev. 2011;34(4):393–407.PubMedCrossRefGoogle Scholar
  56. 56.
    Schonberger RB, Fontes ML, Selzer A. Anesthesia for adult patients with hypertension. UpToDate [Internet]. 2018. Accessed 18 May 2018.
  57. 57.
    Howell SJ, Sear JW, Foëx P. Hypertension, hypertensive heart disease and perioperative cardiac risk. Br J Anaesth. 2004;92(4):570–83.PubMedCrossRefGoogle Scholar
  58. 58.
    Whelton PK, Carey RM. The 2017 clinical practice guideline for high blood pressure. JAMA. 2017;318(21):2073–4.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of AnaesthesiaChristian Medical College VelloreVelloreIndia
  2. 2.Surgical Intensive Care UnitChristian Medical College VelloreVelloreIndia

Personalised recommendations