Advertisement

Anesthesia for Traumatic Spine Injury

  • Onat Akyol
  • Cesar Reis
  • Haley Reis
  • John Zhang
  • Shen Cheng
  • Richard L. ApplegateIIEmail author
Chapter

Abstract

Traumatic spinal cord injury (SCI) is associated with comprehensive organ disturbances and neurologic dysfunction. Neurocritical care management of traumatic SCI includes addressing the loss of autoregulation and hemodynamic instability, in addition to proper airway management. The level of spinal injury plays a role in SCI, and respiratory perturbations and secondary sequelae can occur, particularly in high spinal cord lesions. Avoiding secondary sequelae is paramount in improving functional outcomes and recovery. This chapter describes critical aspects of airway and respiratory management, the hemodynamic challenges from spinal shock, associated injuries, autonomic dysreflexia, and the nutritional challenges that occur in the acute phase of SCI.

Keywords

Trauma Neurotrauma Spinal cord injury Neurocritical care Airway management Autoregulation Hemodynamic instability Autonomic dysreflexia Mechanical ventilation Nutrition Neuroprotection 

Notes

Conflict of Interest

Authors declare no conflict of interest.

References

  1. 1.
    Como JJ, Diaz JJ, Dunham CM, Chiu WC, Duane TM, Capella JM, et al. Practice management guidelines for identification of cervical spine injuries following trauma: update from the eastern association for the surgery of trauma practice management guidelines committee. J Trauma. 2009;67(3):651–9.CrossRefGoogle Scholar
  2. 2.
    Martini RP, Larson DM. Clinical evaluation and airway management for adults with cervical spine instability. Anesthesiol Clin. 2015;33(2):315–27.CrossRefGoogle Scholar
  3. 3.
    Robitaille A. Airway management in the patient with potential cervical spine instability: continuing professional development. Can J Anaesth. 2011;58(12):1125–39.CrossRefGoogle Scholar
  4. 4.
    Brimacombe J, Keller C, Kunzel KH, Gaber O, Boehler M, Puhringer F. Cervical spine motion during airway management: a cinefluoroscopic study of the posteriorly destabilized third cervical vertebrae in human cadavers. Anesth Analg. 2000;91(5):1274–8.CrossRefGoogle Scholar
  5. 5.
    Turkstra TP, Craen RA, Pelz DM, Gelb AW. Cervical spine motion: a fluoroscopic comparison during intubation with lighted stylet, GlideScope, and Macintosh laryngoscope. Anesth Analg. 2005;101(3):910–5, table of contents.CrossRefGoogle Scholar
  6. 6.
    Sagi HC, Beutler W, Carroll E, Connolly PJ. Airway complications associated with surgery on the anterior cervical spine. Spine (Phila Pa 1976). 2002;27(9):949–53.CrossRefGoogle Scholar
  7. 7.
    Ryken TC, Hurlbert RJ, Hadley MN, Aarabi B, Dhall SS, Gelb DE, et al. The acute cardiopulmonary management of patients with cervical spinal cord injuries. Neurosurgery. 2013;72(Suppl 2):84–92.CrossRefGoogle Scholar
  8. 8.
    Robba C, Qeva E, Borsellino B, Aloisio S, Tosti G, Bilotta F. Effects of propofol or sevoflurane anesthesia induction on hemodynamics in patients undergoing fiberoptic intubation for cervical spine surgery: a randomized, controlled, clinical trial. J Anaesthesiol Clin Pharmacol. 2017;33(2):215–20.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Bao FP, Zhang HG, Zhu SM. Anesthetic considerations for patients with acute cervical spinal cord injury. Neural Regen Res. 2017;12(3):499–504.CrossRefGoogle Scholar
  10. 10.
    Hawryluk G, Whetstone W, Saigal R, Ferguson A, Talbott J, Bresnahan J, et al. Mean arterial blood pressure correlates with neurological recovery after human spinal cord injury: analysis of high frequency physiologic data. J Neurotrauma. 2015;32(24):1958–67.CrossRefGoogle Scholar
  11. 11.
    Tamkus AA, Rice KS, Kim HL. Differential rates of false-positive findings in transcranial electric motor evoked potential monitoring when using inhalational anesthesia versus total intravenous anesthesia during spine surgeries. Spine J. 2014;14(8):1440–6.CrossRefGoogle Scholar
  12. 12.
    Foffani G, Humanes-Valera D, Calderon-Munoz F, Oliviero A, Aguilar J. Spinal cord injury immediately decreases anesthetic requirements in rats. Spinal Cord. 2011;49(7):822–6.CrossRefGoogle Scholar
  13. 13.
    Readdy WJ, Saigal R, Whetstone WD, Mefford AN, Ferguson AR, Talbott JF, et al. Failure of mean arterial pressure goals to improve outcomes following penetrating spinal cord injury. Neurosurgery. 2016;79(5):708–14.CrossRefGoogle Scholar
  14. 14.
    Walters BC, Hadley MN, Hurlbert RJ, Aarabi B, Dhall SS, Gelb DE, et al. Guidelines for the management of acute cervical spine and spinal cord injuries: 2013 update. Neurosurgery. 2013;60(Suppl 1):82–91.CrossRefGoogle Scholar
  15. 15.
    Consortium for Spinal Cord Medicine. Early acute management in adults with spinal cord injury: a clinical practice guideline for health-care professionals. J Spinal Cord Med. 2008;31(4):403–79.CrossRefGoogle Scholar
  16. 16.
    Inoue T, Manley GT, Patel N, Whetstone WD. Medical and surgical management after spinal cord injury: vasopressor usage, early surgeries, and complications. J Neurotrauma. 2014;31(3):284–91.CrossRefGoogle Scholar
  17. 17.
    Ploumis A, Yadlapalli N, Fehlings MG, Kwon BK, Vaccaro AR. A systematic review of the evidence supporting a role for vasopressor support in acute SCI. Spinal Cord. 2010;48(5):356–62.CrossRefGoogle Scholar
  18. 18.
    Catapano JS, John Hawryluk GW, Whetstone W, Saigal R, Ferguson A, Talbott J, et al. Higher mean arterial pressure values correlate with neurologic improvement in patients with initially complete spinal cord injuries. World Neurosurg. 2016;96:72–9.CrossRefGoogle Scholar
  19. 19.
    Chesnut RM, Temkin N, Carney N, Dikmen S, Rondina C, Videtta W, et al. A trial of intracranial-pressure monitoring in traumatic brain injury. N Engl J Med. 2012;367(26):2471–81.CrossRefGoogle Scholar
  20. 20.
    Werndle MC, Saadoun S, Phang I, Czosnyka M, Varsos GV, Czosnyka ZH, et al. Monitoring of spinal cord perfusion pressure in acute spinal cord injury: initial findings of the injured spinal cord pressure evaluation study. Crit Care Med. 2014;42(3):646–55.CrossRefGoogle Scholar
  21. 21.
    Shaikh N, Rhaman MA, Raza A, Shabana A, Malstrom MF, Al-Sulaiti G. Prolonged bradycardia, asystole and outcome of high spinal cord injury patients: risk factors and management. Asian J Neurosurg. 2016;11(4):427–32.CrossRefGoogle Scholar
  22. 22.
    Dicpinigaitis PV, Spungen AM, Bauman WA, Absgarten A, Almenoff PL. Bronchial hyperresponsiveness after cervical spinal cord injury. Chest. 1994;105(4):1073–6.CrossRefGoogle Scholar
  23. 23.
    Sharma HS. Pathophysiology of blood-spinal cord barrier in traumatic injury and repair. Curr Pharm Des. 2005;11(11):1353–89.CrossRefGoogle Scholar
  24. 24.
    Harrois A, Hamada SR, Duranteau J. Fluid resuscitation and vasopressors in severe trauma patients. Curr Opin Crit Care. 2014;20(6):632–7.CrossRefGoogle Scholar
  25. 25.
    Squair JW, Belanger LM, Tsang A, Ritchie L, Mac-Thiong JM, Parent S, et al. Spinal cord perfusion pressure predicts neurologic recovery in acute spinal cord injury. Neurology. 2017;89(16):1660–7.CrossRefGoogle Scholar
  26. 26.
    Saulino M. Spinal cord injury pain. Phys Med Rehabil Clin N Am. 2014;25(2):397–410.CrossRefGoogle Scholar
  27. 27.
    Matyas JJ, O’Driscoll CM, Yu L, Coll-Miro M, Daugherty S, Renn CL, et al. Truncated TrkB.T1-mediated astrocyte dysfunction contributes to impaired motor function and neuropathic pain after spinal cord injury. J Neurosci. 2017;37(14):3956–71.CrossRefGoogle Scholar
  28. 28.
    Tateda S, Kanno H, Ozawa H, Sekiguchi A, Yahata K, Yamaya S, et al. Rapamycin suppresses microglial activation and reduces the development of neuropathic pain after spinal cord injury. J Orthop Res. 2017;35(1):93–103.CrossRefGoogle Scholar
  29. 29.
    Zhao P, Hill M, Liu S, Chen L, Bangalore L, Waxman SG, et al. Dendritic spine remodeling following early and late Rac1 inhibition after spinal cord injury: evidence for a pain biomarker. J Neurophysiol. 2016;115(6):2893–910.CrossRefGoogle Scholar
  30. 30.
    Guy SD, Mehta S, Casalino A, Cote I, Kras-Dupuis A, Moulin DE, et al. The CanPain SCI clinical practice guidelines for rehabilitation management of neuropathic pain after spinal cord: recommendations for treatment. Spinal Cord. 2016;54(Suppl 1):S14–23.CrossRefGoogle Scholar
  31. 31.
    Hagen EM, Rekand T. Management of neuropathic pain associated with spinal cord injury. Pain Ther. 2015;4(1):51–65.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Onat Akyol
    • 1
    • 2
  • Cesar Reis
    • 1
    • 3
  • Haley Reis
    • 4
  • John Zhang
    • 1
  • Shen Cheng
    • 5
  • Richard L. ApplegateII
    • 6
    Email author
  1. 1.Department of Physiology and PharmacologyLoma Linda University School of MedicineLoma LindaUSA
  2. 2.Department of AnesthesiologyBag˘cılar Training and Research HospitalI˙stanbulTurkey
  3. 3.Department of Preventive MedicineLoma Linda University Medical CenterLoma LindaUSA
  4. 4.Loma Linda School of MedicineLoma LindaUSA
  5. 5.Department of Neurosurgery, Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
  6. 6.Anesthesiology and Pain MedicineUniversity of California Davis HealthSacramentoUSA

Personalised recommendations