Advertisement

Anesthesia for Traumatic Brain Injury

  • Rachel Kutteruf
Chapter

Abstract

Traumatic brain injury (TBI) is very prevalent and is associated with significant morbidity and mortality. Even mild TBI, also known as concussion, can have long-term sequelae. Anesthesia providers will often be faced with the management of these patients, and the primary goals of care are patient resuscitation and avoidance of secondary neurologic injury. The 2016 Brain Trauma Foundation guidelines for the management of severe traumatic brain injury represent an effort to improve outcomes in this patient population through the implementation of evidence-based practices and standardized care encompassing multiple aspects of treatment, monitoring, and hemodynamic thresholds. The perioperative period is a critical time for optimizing outcomes and decreasing mortality in TBI patients. Anesthesia providers play a vital role in the care of this vulnerable population.

Keywords

Traumatic brain injury Concussion Guidelines Perioperative management 

References

  1. 1.
    Curry P, Viernes D, Sharma D. Perioperative management of traumatic brain injury. Int J Crit Illn Inj Sci. 2011;1(1):27–35.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Taylor CA, Bell JM, Breiding MJ, Xu L. Traumatic brain injury-related emergency department visits, hospitalizations, and deaths – United States, 2007 and 2013. MMWR Surveill Summ. 2017;66(9):1–16.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Kamins J, Giza C. Concussion – mild traumatic brain injury: recoverable injury with potential for serious sequelae. Neurosurg Clin N Am. 2016;27(4):441–52.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Harmon KG, Drezner JA, Gammons M, Guskiewicz KM, Halstead M, Herring SA, et al. American Medical Society for Sports Medicine position statement: concussion in sport. Br J Sports Med. 2013;47(1):15–26.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Kutteruf R, Rozet I, Domino KB. Care of the acutely unstable patient. In: Cottrell JE, Patel P, editors. Cottrell and Patel’s neuroanesthesia. 6th ed. New York: Elsevier; 2017.Google Scholar
  6. 6.
    Pearn ML, Niesman IR, Egawa J, Sawada A, Almenar-Queralt A, Shah SB, et al. Pathophysiology associated with traumatic brain injury: current treatments and potential novel therapies. Cell Mol Neurobiol. 2017;37(4):571–85.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    McGinn MJ, Povlishock JT. Pathophysiology of traumatic brain injury. Neurosurg Clin N Am. 2016;27(4):397–407.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Phan RD, Bendo AA. Perioperative management of adult patients with severe head injury. In: Cottrell JE, Patel P, editors. Cottrell and Patel’s neuroanesthesia. 6th ed. New York: Elsevier; 2017.Google Scholar
  9. 9.
    Sharma D, Vavilala MS. Perioperative management of adult traumatic brain injury. Anesthesiol Clin. 2012;30(2):333–46.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Hasanin A, Kamal A, Amin S, Zakaria D, Sayed RE, Mahmoud K, et al. Incidence and outcome of cardiac injury in patients with severe head trauma. Scand J Trauma Resusc Emerg Med. 2016;24:58.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Corral L, Javierre CF, Ventura JL, Marcos P, Herrero JI, Manez R. Impact of non-neurologic complications in severe traumatic brain injury outcome. Crit Care. 2012;16(2):R44.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Bullock R, Chestnut R, Glifton G, Ghajar J, Marion DW, Narayan RK, et al. Guidelines for the management of severe traumatic brain injury. The Brain Trauma Foundation, American Association of Neurological Surgeons, Joint Section on Neurotrauma and Critical Care. J Neurotrauma. 1996;13(11):641–734.CrossRefGoogle Scholar
  13. 13.
    Carney M, Totten AM, O’Reilly C, Ullman JS, Hawryluk GW, Bell MJ, et al. Guidelines for the management of severe traumatic brain injury, fourth edition. Neurosurgery. 2017;80(1):6–15.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Gerber LM, Chiu YL, Carney N, Härtl R, Ghajar J. Marked reduction in mortality in patients with severe traumatic brain injury. J Neurosurg. 2013;119(6):1583–90.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Stiell IG, Wells GA, Vandemheen K, Clement C, Lesiuk H, Laupacis A, et al. The Canadian CT head rule for patients with minor head injury. Lancet. 2001;357(9266):1391–6.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Haydel MJ, Preston CA, Mills TJ, Luber S, Blaudeau E, DeBlieux PM. Indications for computed tomography in patients with minor head injury. N Engl J Med. 2000;343(2):100–5.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Mutch CA, Talbott JF, Gean A. Imagining evaluation of acute traumatic brain injury. Neurosurg Clin N Am. 2016;27(4):409–39.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Hutchinson PJ, Kolias AG, Timofeev IS, Corteen EA, Czosnyka M, Timothy J, et al. Trial of decompressive craniectomy for traumatic intracranial hypertension. N Engl J Med. 2016;375(12):1119–30.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Honeybul S, Ho KM, Lind CRP, Gillet GR. The current role of decompressive craniectomy for severe traumatic brain injury. J Clin Neurosci. 2017;43:11–5.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Wendling AL, Tighe PJ, Conrad BP, Baslanti TO, Horodyski M, Rechtine GR. A comparison of 4 airway devices on cervical spine alignment in cadaver models of global ligamentous instability at C1-2. Anesth Analg. 2013;117(1):123–32.CrossRefGoogle Scholar
  21. 21.
    Crosby ET. Airway management in adults after cervical spine trauma. Anesthesiology. 2006;104(6):1293–318.PubMedCrossRefGoogle Scholar
  22. 22.
    Cohan P, Wang C, McArthur DL, Cook SW, Dusick JR, Armin B, et al. Acute secondary adrenal insufficiency after traumatic brain injury: a prospective study. Crit Care Med. 2005;33(10):2358–66.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Upchurch CP, Grijalva CG, Russ S, Collins SP, Semler MW, Rice TW, et al. Comparison of etomidate and ketamine for induction during rapid sequence intubation of adult trauma patients. Ann Emerg Med. 2017;69(1):24–33.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Bahn KV, James S, Hendey GW, Snowden B, Kaups K. Single-dose etomidate for intubation in the trauma patient. J Emerg Med. 2012;43(5):e277–82.CrossRefGoogle Scholar
  25. 25.
    Bruder EA, Ball IM, Ridi S, Pickett W, Hohl C. Single induction dose of etomidate versus other induction agents for endotracheal intubation in critically ill patients. Cochrane Database Syst Rev. 2015;1:CD010225.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Filanovsky Y, Miller P, Kao J. Myth: ketamine should not be used as an induction agent for intubation in patients with head injury. CJEM. 2010;12(2):154–7.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Cohen L, Athaide V, Wickham ME, Doyle-Waters MM, Rose NG, Hohl CM. The effect of ketamine on intracranial and cerebral perfusion pressure and health outcomes: a systematic review. Ann Emerg Med. 2015;65(1):43–51.e2.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Wilcox SR, Bittner EA, Elmer J, Seigel TA, Nguyen NT, Dhillon A, et al. Neuromuscular blocking agent administration for emergent tracheal intubation is associated with decreased prevalence of procedure-related complications. Crit Care Med. 2012;40(6):1808–13.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Li J, Murphy-Lavoie H, Bugas C, Martinez J, Preston C. Complications of emergency intubation with and without paralysis. Am J Emerg Med. 1999;17(2):141–3.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Tran DT, Newton EK, Mount VA, Lee JS, Wells GA, Perry JJ. Rocuronium versus succinylcholine for rapid sequence induction intubation. Cochrane Database Syst Rev. 2015;10:CD002788.Google Scholar
  31. 31.
    Clancy M, Halford S, Walls R, Murphy M. In patients with head injuries who undergo rapid sequence intubation with succinylcholine, does pretreatment with a competitive neuromuscular blocking agent improve outcome? A literature review. Emerg Med J. 2001;18(5):373–5.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Sørensen MK, Bretlau C, Gätke MR, Sørensen AM, Rasmussen LS. Rapid sequence induction and intubation with rocuronium-sugammadex compared with succinylcholine: a randomized trial. Br J Anaesth. 2012;108(4):682–9.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Sanfilippo F, Santonocito C, Veenith T, Astuto M, Maybauer MO. The role of neuromuscular blockade in patients with traumatic brain injury: a systematic review. Neurocrit Care. 2015;22(2):325–34.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Stirt JA, Grosslight KR, Bedford RF, Vollmer D. “Defasciculation” with metocurine prevents succinylcholine-induced increases in intracranial pressure. Anesthesiology. 1987;67(1):50–3.PubMedCrossRefGoogle Scholar
  35. 35.
    Minton MD, Grosslight K, Stirt JA, Bedford RF. Increases in intracranial pressure from succinylcholine: prevention by prior nondepolarizing blockade. Anesthesiology. 1986;65(2):165–9.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    White PF, Schlobohm RM, Pitts LH, Lindauer JM. A randomized study of drugs for preventing increases in intracranial pressure during endotracheal suctioning. Anesthesiology. 1982;57(3):242–4.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Kovarik WD, Mayberg TS, Lam AM, Mathisen TL, Winn HR. Succinylcholine does not change intracranial pressure, cerebral blood flow velocity, or the electroencephalogram in patients with neurologic injury. Anesth Analg. 1994;78(3):469–73.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Chui J, Ramamani M, Mehta J, Manninen P, Venkatraghavan L. Comparison of propofol and volatile agents during elective craniotomy procedures: systematic review and meta-analysis. Can J Anaesth. 2014;61(4):347–56.PubMedCrossRefGoogle Scholar
  39. 39.
    Matsumoto M, Sakabe T. Effects of anesthetic agents and other drugs on cerebral blood flow, metabolism, and intracranial pressure. In: Cottrell JE, Patel P, editors. Cottrell and Patel’s neuroanesthesia. 6th ed. New York: Elsevier; 2017.Google Scholar
  40. 40.
    Zeiler FA, Teitelbaum J, West M, Gillman LM. The ketamine effect on ICP in traumatic brain injury. Neurocrit Care. 2014;21(1):163–73.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Prabhakar H, Singh GP, Mahajan C, Kapoor I, Kalaivani M, Anand V. Intravenous versus inhalational techniques for rapid emergence from anaesthesia in patients undergoing brain tumor surgery. Cochrane Database Syst Rev. 2016;9:CD010467.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Lazaridis C, Robertson CS. The role of multimodal invasive monitoring in acute traumatic brain injury. Neurosurg Clin N Am. 2016;27(4):509–17.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Sharma D, Brown MJ, Curry P, Noda S, Chesnut RM, Vavilala MS. Prevalence and risk factors for intraoperative hypotension during craniotomy for traumatic brain injury. J Neurosurg Anesthesiol. 2012;24(3):178–84.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Kawaguchi M, Sakamoto T, Ohnishi H, Karasawa J, Furuya H. Perioperative predictors of reduction in arterial blood pressure following dural opening during surgical evacuation of acute subdural hematoma. J Neurosurg Anesthesiol. 1996;8(2):117–22.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Ract C, Vigué B. Comparison of the cerebral effects of dopamine and norepinephrine in severely head-injured patients. Intensive Care Med. 2001;27(1):101–6.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Steiner LA, Johnston AJ, Czosnyka M, Chatfield DA, Salvador R, Coles JP, et al. Direct comparison of cerebrovascular effects of norepinephrine and dopamine in head-injured patients. Crit Care Med. 2004;32(4):1049–54.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Johnston AJ, Steiner LA, Chatfield DA, Coles JP, Hutchinson PJ, Al-Rawi PG. Effect of cerebral perfusion pressure augmentation with dopamine and norepinephrine on global and focal brain oxygenation after traumatic brain injury. Intensive Care Med. 2004;30(5):791–7.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Sookplung P, Siriussawakul A, Malakouti A, Sharma D, Wang J, Souter MJ, et al. Vasopressor use and effect on blood pressure after severe adult traumatic brain injury. Neurocrit Care. 2011;15(1):46–54.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Myburgh J, Cooper DJ, Finfer S, Bellomo R, Norton R, Bishop N, et al. Saline or albumin for fluid resuscitation in patients with traumatic brain injury. N Engl J Med. 2007;357(9):874–84.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Cooper DJ, Myburg J, Heritier S, Finfer S, Bellomo R, Billot L, et al. Albumin resuscitation for traumatic brain injury: is intracranial hypertension the cause of increased mortality? J Neuro-Oncol. 2013;30(7):512–8.Google Scholar
  51. 51.
    Van Aken HK, Kampmeier TG, Ertmer C, Westphal M. Fluid resuscitation in patients with traumatic brain injury: what is a SAFE approach? Curr Opin Anaesthesiol. 2012;25(5):563–5.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Bulger EM, May S, Kerby JD, Emerson S, Stiell IG, Schreiber MA, et al. Out-of-hospital hypertonic resuscitation after traumatic hypovolemic shock: a randomized, placebo controlled trial. Ann Surg. 2011;253(3):431–41.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Cooper DJ, Myles PS, McDermott FT, Murray LJ, Laidlaw J, Cooper G, et al. Prehospital hypertonic saline resuscitation of patients with hypotension and severe traumatic brain injury: a randomized controlled trial. JAMA. 2004;29(11):1350–7.CrossRefGoogle Scholar
  54. 54.
    Winkler SR, Munoz-Ruiz L. Mechanism of action of mannitol. Surg Neurol. 1995;43(1):59.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Komotar AJ, Mocco J, Ransom ER, Mack WJ, Zacharia BE, Wilson DA, et al. Herniation secondary to critical postcraniotomy cerebrospinal fluid hypovolemia. Neurosurgery. 2005;57(2):286–92.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Robertson CS, Hannay HJ, Yamal JM, Gopinath S, Goodman JC, Tilley BC, et al. Effect of erythropoietin and transfusion threshold on neurologic recovery after traumatic brain injury: a randomized clinical trial. JAMA. 2014;312(1):36–47.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Sekhon MS, McLean N, Henderson WR, Chittock DR, Griesdale DE. Association of hemoglobin concentration and mortality in critically ill patients with severe traumatic brain injury. Crit Care. 2012;16(4):R128.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Lelubre C, Bouzat P, Crippa IA, Taccone FS. Anemia management after acute brain injury. Crit Care. 2016;20(1):152.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Hare GM, Tsui AK, McLaren AT, Ragoonanan TE, Yu J, Mazer CD. Anemia and cerebral outcomes: many questions, fewer answers. Anesth Analg. 2008;107(4):1356–70.PubMedCrossRefGoogle Scholar
  60. 60.
    Salim A, Hadjizacharia P, DuBose J, Brown C, Inaba K, Chan L, et al. Role of anemia in traumatic brain injury. J Am Coll Surg. 2008;207(3):398–406.PubMedCrossRefGoogle Scholar
  61. 61.
    Corwin HL, Parsonette KC, Gettinger A. RBC transfusion in the ICU. Is there a reason? Chest. 1995;108(3):767–71.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Hébert PC, Wells G, Blajchman MA, Marshall J, Martin C, Pagliarello G, et al. A multicenter, randomized, controlled clinical trial of transfusion requirements in critical care. Transfusion Requirements in Critical Care Investigators, Canadian Critical Care Trials Group. N Engl J Med. 1999;340(6):409–17.PubMedCrossRefGoogle Scholar
  63. 63.
    Corwin HL, Gettinger A, Pearl RG, Fink MP, Levy MM, Abraham E, et al. The CRIT study: anemia and blood transfusion in the critically ill—current clinical practice in the United States. Crit Care Med. 2004;32(1):39–52.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Carson JL, Guyatt G, Heddle NM, Grossman BJ, Cohn CS, Fung MK, et al. Clinical practice guidelines from the AABB: red blood cell transfusion thresholds and storage. JAMA. 2016;316(19):2025–35.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Leal-Noval SR, Rincón-Ferrari MD, Marin-Niebla A, Cayuela A, Arelleno-Orden V, Marín-Caballos A, et al. Transfusion of erythrocyte concentrates produces variable increment on cerebral oxygenation in patients with severe traumatic brain injury: a preliminary study. Intensive Care Med. 2006;32(11):1733–40.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Yamal JM, Rubin ML, Benoit JS, Tilley BC, Gopinath S, Hannay HJ, et al. Effect of hemoglobin transfusion threshold on cerebral hemodynamics and oxygenation. J Neurotrauma. 2015;32(16):1239–45.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Pendem S, Rana S, Manno EM, Gajic O. A review of red cell transfusion in the neurologic intensive care unit. Neurocrit Care. 2006;4(1):63–7.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Warner MA, O’Keeffe T, Bhavsar P, Shringer R, Moore C, Harper C, et al. Transfusions and long-term functional outcomes in traumatic brain injury. J Neurosurg. 2010;113(3):539–46.PubMedCrossRefGoogle Scholar
  69. 69.
    Kramer AH, Roberts DJ, Zygun DA. Optimal glycemic control in neurocritical care patients: a systematic review and meta-analysis. Crit Care. 2012;16(5):R203.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Griesdale DE, Tremblay MH, McEwen J, Chittock DR. Glucose control and mortality in patients with severe traumatic brain injury. Neurocrit Care. 2009;11(3):311–6.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Liu-DeRyke X, Collingridge DS, Orme J, Roller D, Zurasky J, Rhoney DH. Clinical impact of early hyperglycemia during acute phase of traumatic brain injury. Neurocrit Care. 2009;11(2):151–7.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Buitrago Blanco MM, Prashant GN, Vespa PM. Cerebral metabolism and the role of glucose control in acute traumatic brain injury. Neurosurg Clin N Am. 2016;27(4):453–63.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    van den Berghe G, Wouters P, Weekers F, Verwaest C, Bruyninchx F, Schetz M, et al. Intensive insulin therapy in critically ill patients. N Engl J Med. 2001;345(19):1359–67.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Finfer S, Chittock DR, Su SY, Blair D, Foster D, Dhingra V, et al. Intensive versus conventional glucose control in critically ill patients. N Engl J Med. 2009;360(13):1283–97.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Griesdale DE, de Souza RJ, van Dam RM, Heyland DK, Cook DJ, Malhotra A, et al. Intensive insulin therapy and mortality among critically ill patients: a meta-analysis including NICE-SUGAR study data. CMAJ. 2009;180(8):821–7.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Wiener RS, Wiener DC, Larson RJ. Benefits and risks of tight glucose control in critically ill adults: a meta-analysis. JAMA. 2008;300(8):933–44.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Finfer S, Chittock D, Li Y, Foster D, Dhingra V, Bellomo R, et al. Intensive versus conventional glucose control in critically ill patients with traumatic brain injury: long-term follow-up of a subgroup of patients from the NICE-SUGAR study. Intensive Care Med. 2015;41(6):1037–47.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Bilotta F, Caramia R, Cernak I, Paoloni FP, Doronzio A, Cuzzone V, et al. Intensive insulin therapy after severe traumatic brain injury: a randomized clinical trial. Neurocrit Care. 2008;9(2):159–66.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Perman SM, Goyal M, Neumar RW, Topjian AA, Gaieski DF. Clinical applications of targeted temperature management. Chest. 2014;145(2):386–93.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Lewis SR, Evans DJ, Butler AR, Schofield-Robinson OJ, Alderson P. Hypothermia for traumatic brain injury. Cochrane Database Syst Rev. 2017;9:CD001048.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Ahmed AI, Bullock MR, Dietrich WD. Hypothermia in traumatic brain injury. Neurosurg Clin N Am. 2016;27(4):489–97.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Chiu AW, Hinson HE. Future directions for hypothermia following severe traumatic brain injury. Semin Respir Crit Care Med. 2017;38(6):768–74.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Andrews PJ, Sinclair HL, Rodriguez A, Harris BA, Battison CG, Rhodes JK, et al. Hypothermia for intracranial hypertension after traumatic brain injury. N Engl J Med. 2015;373(25):2403–12.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Rincon F, Hunter K, Schorr C, Dellinger RP, Zanotti-Cavazzoni S. The epidemiology of spontaneous fever and hypothermia on admission of brain injury patients to intensive care units: a multicenter cohort study. J Neurosurg. 2014;121(4):950–60.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Li J, Jiang JY. Chinese Head Trauma Data Bank: effect of hyperthermia on the outcome of acute head trauma patients. J Neurotrauma. 2012;29(1):96–100.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Schwarzrock C. Collaboration in the presence of cerebral edema: the complications of steroids. Surg Neurol Int. 2016;7(Suppl 7):S185–9.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Roberts I, Yates D, Sandercock P, Farrell B, Wasserberg J, Lomas G, et al. Effect of intravenous corticosteroids on death within 14 days in 10008 adults with clinically significant head injury (MRC CRASH trial): a randomised placebo-controlled trial. Lancet. 2004;364(9442):1321–8.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Edwards P, Arango M, Balica L, Cottingham R, El-Sayed H, Farrell B, et al. Final results of MRC CRASH, a randomised placebo-controlled trial of intravenous corticosteroid in adults with head injury—outcomes at 6 months. Lancet. 2005;365(9475):1957–9.CrossRefGoogle Scholar
  89. 89.
    Alderson P, Roberts I. Corticosteroids for acute traumatic brain injury. Cochrane Database Syst Rev. 2005;1:CD000196.Google Scholar
  90. 90.
    Zimmermann LL, Diaz-Arrastia R, Vespa PM. Seizures and the role of anticonvulsants after traumatic brain injury. Neurosurg Clin N Am. 2016;27(4):499–508.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Garga N, Lowenstein DH. Posttraumatic epilepsy: a major problem in desperate need of major advances. Epilepsy Curr. 2006;6(1):1–5.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Vespa PM, Nuwer MR, Nenov V, Ronne-Engstrom E, Hovda DA, Bergsneider M, et al. Increased incidence and impact of convulsive and nonconvulsive seizures after traumatic brain injury as detected by continuous electroencephalographic monitoring. J Neurosurg. 1999;91(5):750–60.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Claassen J, Mayer SA, Kowalski RG, Emerson RG, Hirsch LJ. Detection of electrographic seizures with continuous EEG monitoring in critically ill patients. Neurology. 2004;62(10):1743–8.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Temkin NR, Dikmen SS, Wilensky AJ, Keihm J, Chabal S, Winn HR. A randomized, double-blind study of phenytoin for the prevention of post-traumatic seizures. N Engl J Med. 1990;323(8):497–502.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Thompson K, Pohlmann-Eden B, Capbell LA, Abel H. Pharmacologic treatments for preventing epilepsy following traumatic head injury. Cochrane Database Syst Rev. 2015;8:CD009900.Google Scholar
  96. 96.
    Inaba K, Menaker J, Branco BC, Gooch J, Okoye OT, Herrold J, et al. A prospective multicenter comparison of levetiracetam versus phenytoin for early posttraumatic seizure prophylaxis. J Trauma Acute Care Surg. 2013;74(3):766–71.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Jones KE, Puccio AM, Harshman KJ, Falcione B, Benedict N, Jankowitz BT, et al. Levetiracetam versus phenytoin for seizure prophylaxis in severe traumatic brain injury. Neurosurg Focus. 2008;25(4):E3.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Zafar SN, Khan AA, Ghauri AA, Shamim MS. Phenytoin versus levetiracetam for seizure prophylaxis after brain injury – a meta analysis. BMC Neurol. 2012;12:30.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Hernández-Palazón J, Tortosa JA, Martínez-Lage JF, Pérez-Ayala M. Rocuronium-induced neuromuscular blockade is affected by chronic phenytoin therapy. J Neurosurg Anesthesiol. 2001;13(2):79–82.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Heiderich S, Jürgens J, Rudolf D, Dennhardt N, Echtermeyer F, Leffler A, et al. Compatibility of common drugs with acetate-containing balanced electrolyte solutions in pediatric anesthesia. Paediatr Anaesth. 2016;26(6):590–8.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Barkhoudarian G, Hovda DA, Giza CC. The molecular pathophysiology of concussive brain injury – an update. Phys Med Rehabil Clin N Am. 2016;27(2):373–93.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Coronado VG, Haileyesus T, Cheng TA, Bell JM, Haarbauer-Krupa J, Lionbarger MR, et al. Trends in sports- and recreation-related traumatic brain injuries treated in US emergency departments: the National Electronic Injury Surveillance System-All Injury Program (NEISS-AIP) 2001-2012. J Head Trauma Rehabil. 2015;30(3):185–97.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Tasker RC. Anesthesia and concussion. Curr Opin Anaesthesiol. 2017;30(3):343–8.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Abcejo AS, Savica R, Lanier WL, Pasternak JJ. Exposure to surgery and anesthesia after concussion due to mild traumatic brain injury. Mayo Clin Proc. 2017;92(7):1042–52.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Rachel Kutteruf
    • 1
  1. 1.Neuroanesthesiology, Department of AnesthesiologyU.S. Anesthesia Partners—WashingtonSeattleUSA

Personalised recommendations