Pro-resolution of Inflammation: New Hints to Manage Sepsis?

  • Yongjian Liu
  • Yu Hao
  • Suwas Bhandari
  • Shengwei Jin


Sepsis is newly defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. The pathophysiological mechanism of sepsis is highly complex, and the mortality of in-patients suffering from sepsis is more than 10%. Severe unmanaged inflammation and inappropriate immune response characterize sepsis. Anti-inflammation therapies alone are not successful for the reason that disbalance of anti-inflammatory and pro-resolving agents. In the recent researches, the host responses during the course of self-resolving infections are found to have the involvements of specialized pro-resolution mediators (SPMs), namely, lipoxins, resolvins, protectins and maresins. These endogenous lipid metabolites are core signal molecules in the resolution of inflammation, playing a key role in regulating the inflammation and promoting return to homeostasis. Besides, heme oxygenase-1 (HO-1, a sensitive marker for oxidative stress) is also known for upregulation in inflammation profiling. Carbon monoxide, synthesized by HO-1, performs multiple stances of anti-inflammation and pro-resolution along with the SPMs. If the potentially beneficial effects of these mediators would be well evaluated in clinical trials, they present encouraging new hints in managing infectious maladies especially sepsis.


Sepsis Specialized pro-resolution mediators Pro-resolution 


  1. 1.
    Singer M. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA. 2016;315(8):801–10.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Torio CM. National inpatient hospital costs: the most expensive conditions by payer, 2011. Statistical Brief #160. Healthcare Cost and Utilization Project (HCUP) Statistical Briefs. 2013.
  3. 3.
    Iwashyna TJ. Population burden of long-term survivorship after severe sepsis in older Americans. J Am Geriatr Soc. 2012;60(6):1070–7.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Gaieski DF. Benchmarking the incidence and mortality of severe sepsis in the United States. Crit Care Med. 2013;41(5):1167–74.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Vincent J, ICON Investigators. Assessment of the worldwide burden of critical illness: the Intensive Care Over Nations (ICON) audit. Lancet Respir Med. 2014;2(5):380–6.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Fleischmann C, International Forum of Acute Care Trialists. Assessment of global incidence and mortality of hospital-treated sepsis: current estimates and limitations. Am J Respir Crit Care Med. 2016;193(3):259–72.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Das UN. Is sepsis a pro-resolution deficiency disorder? Med Hypotheses. 2013;80(3):297–9.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Lee CR. Resolvin infectious inflammation by targeting the host response. N Engl J Med. 2015;373(22):2183–5.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Serhan CN. Pro-resolving lipid mediators are leads for resolution physiology. Nature. 2014;510:92–101.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Serhan CN. Protectins and maresins: new pro-resolving families of mediators in acute inflammation and resolution bioactive metabolome. Biochim Biophys Acta. 2015;1851(4):397–413.PubMedCrossRefGoogle Scholar
  11. 11.
    Serhan CN. Treating inflammation and infection in the 21st century: new hints from decoding resolution mediators and mechanisms. FASEB J. 2017;31(4):1273–88.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Dalli J. Does promoting resolution instead of inhibiting inflammation represent the new paradigm in treating infections? Mol Aspects Med. 2017;58:12–20. pii: S0098-2997(17)30021–3.PubMedCrossRefGoogle Scholar
  13. 13.
    Serhan CN. Resolvins: a family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals. J Exp Med. 2002;196:1025–37.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Shinohara M. Novel endogenous proresolving molecules: essential fatty acid-derived and gaseous mediators in the resolution of inflammation. J Atheroscler Thromb. 2016;23(6):655–64.PubMedCrossRefGoogle Scholar
  15. 15.
    Chiang N. Inhaled carbon monoxide accelerates resolution of inflammation via unique proresolving mediator-heme oxygenase-1 circuits. J Immunol. 2013;190:6378–88.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Gobbetti T. Annexin A1 and resolution of inflammation: tissue repairing properties and signalling signature. Biol Chem. 2016;397:981–93.PubMedCrossRefGoogle Scholar
  17. 17.
    Serhan CN. Lipoxins and aspirin-triggered 15-epi-lipoxins are the first lipid mediators of endogenous anti-inflammation and resolution. Prostaglandins Leukot Essent Fatty Acids. 2005;73:141–62.PubMedCrossRefGoogle Scholar
  18. 18.
    Serhan CN. Novel anti-inflammatory--pro-resolving mediators and their receptors. Curr Top Med Chem. 2011;11(6):629–47.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Psychogios N. The human serum metabolome. PLoS One. 2011;6(2):e16957.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Jin SW. Posttreatment with aspirin-triggered lipoxin A4 analog attenuates lipopolysaccharide-induced acute lung injury in mice: the role of heme oxygenase-1. Anesth Analg. 2007;104:369–77.PubMedCrossRefGoogle Scholar
  21. 21.
    Walker J. Lipoxin A4 increases survival by decreasing systemic inflammation and bacterial load in sepsis. Shock. 2011;36:410–6.PubMedCrossRefGoogle Scholar
  22. 22.
    Bitto A. Flavocoxid, a dual inhibitor of COX-2 and 5-LOX of natural origin, attenuates the inflammatory response and protects mice from sepsis. Crit Care. 2012;16:R32.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Wu B. Lipoxin A4 augments host defense in sepsis and reduces Pseudomonas aeruginosa virulence through quorum sensing inhibition. FASEB J. 2016;30:2400–10.PubMedCrossRefGoogle Scholar
  24. 24.
    Ariel A. Aspirin-triggered lipoxin A4 and B4 analogs block extracellular signal-regulated kinase-dependent TNF-alpha secretion from human T cells. J Immunol. 2003;170:6266–72.PubMedCrossRefGoogle Scholar
  25. 25.
    Liu H. Effect of BML-111 on the intestinal mucosal barrier in sepsis and its mechanism of action. Mol Med Rep. 2015;12:3101–6.PubMedCrossRefGoogle Scholar
  26. 26.
    Gobbetti T. Nonredundant protective properties of FPR2/ALX in polymicrobial murine sepsis. Proc Natl Acad Sci U S A. 2014;111:18685–90.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Khadaroo RG. ARDS and the multiple organ dysfunction syndrome: common mechanisms of a common systemic process. Crit Care Clin. 2002;18:127–41.PubMedCrossRefGoogle Scholar
  28. 28.
    Sordi R. Dual role of lipoxin A4 in pneumosepsis pathogenesis. Int Immunopharmacol. 2013;7:283–92.CrossRefGoogle Scholar
  29. 29.
    Marshall JC. Why have clinical trials in sepsis failed? Trends Mol Med. 2014;20:195–203.PubMedCrossRefGoogle Scholar
  30. 30.
    Tsai WH. Plasma levels in sepsis patients of annexin A1, lipoxin A4, macrophage inflammatory protein-3a, and neutrophil gelatinase-associated lipocalin. J Chin Med Assoc. 2013;76:486–90.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Serhan CN. Resolvins and protectins in inflammation resolution. Chem Rev. 2011;111:5922–43.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Aoki H. Protective effect of resolvin E1 on the development of asthmatic airway inflammation. Biochem Biophys Res Commun. 2010;400(1):128–33.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Seki H. The anti-inflammatory and proresolving mediator resolvin E1 protects mice from bacterial pneumonia and acute lung injury. J Immunol. 2010;184:836–43.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    El Kebir D. Resolvin E1 promotes phagocytosis-induced neutrophil apoptosis and accelerates resolution of pulmonary inflammation. Proc Natl Acad Sci U S A. 2012;109:14983–8.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Ariel A. Apoptotic neutrophils and T cells sequester chemokines during immune response resolution through modulation of CCR5 expression. Nat Immunol. 2006;7:1209–16.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Lee HN. Resolvin D1-mediated NOX2 inactivation rescues macrophages undertaking efferocytosis from oxidative stress-induced apoptosis. Biochem Pharmacol. 2013;86:759–69.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Prieto P. Activation of autophagy in macrophages by pro-resolving lipid mediators. Autophagy. 2015;11:1729–44.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Murakami T. Suppressive action of resolvin D1 on the production and release of septic mediators in D-galactosamine-sensitized endotoxin shock mice. Exp Ther Med. 2011;2:57–61.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Chiang N. Infection regulates pro-resolving mediators that lower antibiotic requirements. Nature. 2012;484:524–8.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Kurihara T. Resolvin D2 restores neutrophil directionality and improves survival after burns. FASEB J. 2013;27:2270–81.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Chen F. Resolvin D1 improves survival in experimental sepsis through reducing bacterial load and preventing excessive activation of inflammatory response. Eur J Clin Microbiol Infect Dis. 2014;33:457–64.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Chen J. Aspirin-triggered resolvin D1 down-regulates inflammatory responses and protects against endotoxin-induced acute kidney injury. Toxicol Appl Pharmacol. 2014;277:118–23.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Spite M. Resolvin D2 is a potent regulator of leukocytes and controls microbial sepsis. Nature. 2009;461:1287–91.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Park CK. Resolvin D2 is a potent endogenous inhibitor fortransient receptor potential subtype V1/A1, inflammatory pain, and spinal cord synaptic plasticity in mice: distinct roles of resolvin D1, D2, and E1. J Neurosci. 2011;31:18433–8.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Serhan CN. Anti-inflammatory actions of neuroprotectin D1/protectin D1 and its natural stereoisomers: assignments of dihydroxy-containing docosatrienes. J Immunol. 2006;176:1848–59.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Morita M. The lipid mediator protectin D1 inhibits influenza virus replication and improves severe influenza. Cell. 2013;153:112–25.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Xia HF. Protectin DX increases survival in a mouse model of sepsis by ameliorating inflammation and modulating macrophage phenotype. Sci Rep. 2017;7:99.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Dalli J. Human sepsis eicosanoid and proresolving lipid mediator temporal profiles: correlations with survival and clinical outcomes. Crit Care Med. 2017;45(1):58–68.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Serhan CN. Maresins: novel macrophage mediators with potent anti-inflammatory and proresolving actions. J Exp Med. 2009;206:15–23.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Sasaki K. Total synthesis and bioactivities of two proposed structures of maresin. Chem Asian J. 2011;6(2):534–43.PubMedCrossRefGoogle Scholar
  51. 51.
    Abdulnour RE. Maresin 1 biosynthesis during platelet–neutrophil interactions is organ-protective. Proc Natl Acad Sci U S A. 2014;111(46):16526–31.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Colas RA. Identification and actions of the maresin 1 metabolome in infectious inflammation. J Immunol. 2016;197(11):4444–52.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Gong J. Maresin 1 mitigates LPS-induced acute lung injury in mice. Br J Pharmacol. 2014;171(14):3539–50.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Gong J. Maresin 1 prevents lipopolysaccharide-induced neutrophil survival and accelerates resolution of acute lung injury. Shock. 2015;44(4):371–80.PubMedCrossRefGoogle Scholar
  55. 55.
    Chen L. Maresin 1 maintains the permeability of lung epithelial cells in vitro and in vivo. Inflammation. 2016;39(6):1981–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Li RD. Maresin 1 mitigates inflammatory response and protects mice from sepsis. Mediators Inflamm. 2016;2016:3798465.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Deng B. Maresin biosynthesis and identification of maresin 2, a new anti-inflammatory and pro-resolving mediator from human macrophages. PLoS One. 2014;9(7):e102362.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Spite M. Novel lipid mediators promote resolution of acute inflammation: impact of aspirin and statins. Circ Res. 2010;107:1170–84.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Rogerio AP. Resolvin D1 and aspirin-triggered resolvin D1 promote resolution of allergic airways responses. J Immunol. 2012;189:1983–91.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Alfredo MB. Protective role of acetylsalicylic acid in experimental Trypanosoma cruzi infection: evidence of a 15-epi-lipoxin A4-mediated effect. PLoS Negl Trop Dis. 2013;7:e2173.CrossRefGoogle Scholar
  61. 61.
    Toner P. Aspirin as a potential treatment in sepsis or acute respiratory distress syndrome. Crit Care. 2015;19:374.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Halushka PV. Studies on the beneficial effects of aspirin in endotoxic shock: relationship to inhibition of arachidonic acid metabolism. Am J Med. 1983;74:91–6.PubMedCrossRefGoogle Scholar
  63. 63.
    Morris T. Effects of low-dose aspirin on acute inflammatory responses in humans. J Immunol. 2009;183:2089–96.PubMedCrossRefGoogle Scholar
  64. 64.
    El Kebir D. 15-epi-lipoxin A4 inhibits myeloperoxidase signaling and enhances resolution of acute lung injury. Am J Respir Crit Care Med. 2009;180:311–9.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Chen W. Prehospital aspirin use is associated with reduced risk of acute respiratory distress syndrome in critically ill patients: a propensity-adjusted analysis. Crit Care Med. 2015;43:801–7.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Eisen DP. Acetyl salicylic acid usage and mortality in critically ill patients with the systemic inflammatory response syndrome and sepsis. Crit Care Med. 2012;40:1761–7.CrossRefGoogle Scholar
  67. 67.
    Falcone M. Lower mortality rate in elderly patients with community-onset pneumonia on treatment with aspirin. J Am Heart Assoc. 2015;4:e001595.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Colas RA. Identification and signature profiles for pro-resolving and inflammatory lipid mediators in human tissue. Am J Physiol Cell Physiol. 2014;307(1):C39–54.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Kor DJ. Association of prehospitalization aspirin therapy and acute lung injury: results of a multicenter international observational study of at-risk patients. Crit Care Med. 2011;39:2393–400.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Wiewel MA. Chronic antiplatelet therapy is not associated with alterations in the presentation, outcome, or host response biomarkers during sepsis: a propensity-matched analysis. Intensive Care Med. 2016;42:352–60.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Dalli J. Elucidation of novel 13-series resolvins that increase with atorvastatin and clear infections. Nat Med. 2015;21(9):1071–5.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Dalli J. Vagal regulation of group 3 innate lymphoid cells and the immunoresolvent PCTR1 controls infection resolution. Immunity. 2017;46(1):92–105.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Dalli J. Novel proresolving and tissue-regenerative resolvin and protectinsulfido-conjugated pathways. FASEB J. 2015;29(5):2120–36.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Ramon S. The protectin PCTR1 is produced by human M2 macrophages and enhances resolution of infectious inflammation. Am J Pathol. 2016;186(4):962–73.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Dalli J. Maresin conjugates in tissue regeneration biosynthesis enzymes in human macrophages. Proc Natl Acad Sci U S A. 2016;113(43):12232–7.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Sacerdoti D. EETs and HO-1 cross-talk. Prostaglandins Other Lipid Mediat. 2016;125:65–79.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Nakahira K. Carbon monoxide in the treatment of sepsis. Am J Physiol Lung Cell Mol Physiol. 2015;309:1387–93.CrossRefGoogle Scholar
  78. 78.
    Wegiel B. Macrophages sense and kill bacteria through carbon monoxide-dependent inflammasome activation. J Clin Investig. 2014;124:4926–40.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Nakahira K. Carbon monoxide differentially inhibits TLR signaling pathways by regulating ROS-induced trafficking of TLRs to lipid rafts. J Exp Med. 2006;203:2377–89.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Poss KD. Reduced stress defense in heme oxygenase 1-deficient cells. Proc Natl Acad Sci U S A. 1997;94:10925–30.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Kyokane T. Carbon monoxide from heme catabolism protects against hepatobiliary dysfunction in endotoxin-treated rat liver. Gastroenterology. 2001;120:1227–40.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Cepinskas G. Carbon monoxide liberated from carbon monoxide-releasing molecule CORM-2 attenuates inflammation in the liver of septic mice. Am J Physiol Gastrointest Liver Physiol. 2008;294:184–91.CrossRefGoogle Scholar
  83. 83.
    Lee S. Carbon monoxide confers protection in sepsis by enhancing beclin 1-dependent autophagy and phagocytosis. Antioxid Redox Signal. 2014;20:432–42.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Biernacki WA. Exhaled carbon monoxide in patients with lower respiratory tract infection. Respir Med. 2001;95:1003–5.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Shi Y. Plasma carbon monoxide levels in term newborn infants with sepsis. Biol Neonate. 2000;78:230–2.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Takaki S. Beneficial effects of the heme oxygenase-1/carbon monoxide system in patients with severe sepsis/septic shock. Intensive Care Med. 2010;36:42–8.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Morimatsu H. Increased heme catabolism in critically ill patients: correlation among exhaled carbon monoxide, arterial carboxyhemoglobin, and serum bilirubin IX alpha concentrations. Am J Physiol Lung Cell Mol Physiol. 2006;290:114–9.CrossRefGoogle Scholar
  88. 88.
    Zegdi R. Increased endogenous carbon monoxide production in severe sepsis. Intensive Care Med. 2002;28:793–6.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    D’Acquisto F. Annexin-A1: a pivotal regulator of the innate and adaptive immune systems. Br J Pharmacol. 2008;155(2):152–69.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Perretti M. Annexin A1 and glucocorticoids as effectors of the resolution of inflammation. Nat Rev Immunol. 2009;9(1):62–70.PubMedCrossRefGoogle Scholar
  91. 91.
    Buckingham JC. Annexin 1, glucocorticoids, and the neuroendocrine-immune interface. Ann N Y Acad Sci. 2006;1088:396–409.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Perretti M. Annexin I is stored within gelatinase granules of human neutrophil and mobilized on the cell surface upon adhesion but not phagocytosis. Cell Biol Int. 2000;24(3):163–74.PubMedCrossRefGoogle Scholar
  93. 93.
    Hotchkiss RS. Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nat Rev Immunol. 2013;13:862–74.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Yongjian Liu
    • 1
  • Yu Hao
    • 1
  • Suwas Bhandari
    • 1
  • Shengwei Jin
    • 1
  1. 1.Department of Anesthesiology and Critical Care MedicineThe Second Affiliated Hospital, Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina

Personalised recommendations