Advertisement

Plasticity of Epidermal Stem Cells: The Future of Stem Cell-Based Therapeutics to Improve Cutaneous Wound Healing

  • Xiaoyan Sun
  • Hua Qin
  • Siming Yang
  • Xiaobing Fu
Chapter

Abstract

The purpose of wound healing is to repair the skin to prevent infection and to restore tissue integrity and function. Unfortunately, in adults, this process is geared toward faster rates of healing, to prevent infection, which ultimately leads to a compromise in the quality of healing. This compromise results in scarring, where the architecture of the skin is distinct from the original tissue, significantly affecting function and overall quality of life. The ideal for future treatments is to increase the rates of healing while improving the quality of healing resulting in more of a regenerative process rather than a repair-orientated one.

The use of cellular therapy in the treatment of cutaneous wounds is currently an active area of investigation. Multipotent adult stem cells are an attractive choice for cell therapy because they have a large proliferative potential, the ability to differentiate into different cell types and produce a variety of cytokines and growth factors important to wound healing. As the biggest organ in the body, skin tissues represent a larger reservoir for adult stem cells. Recent studies further report that adult skin tissues contain cell populations with pluripotent characteristics. Multipotent stem cells from hair follicle and non-follicular skin, both in epidermal and dermal tissues, are found to have the differentiation capacity to generate multiple cell lineages. Specifically, it has been evidenced that keratinocytes in the skin may possess a transcriptional profile that is more amenable to reprogramming, and the fate of these cells can change in response to surrounding microenvironment. Given its easy accessibility, stem cells in the skin will not only provide an experimental model for skin biology but also may have extensive therapeutic implications in the replacement of the skin and may serve as an alternative source of stem cells for several other organs outside of the skin. The in situ activation and mobilization of stem cell populations in the skin is an ideal way to renew and repair the epidermis and dermis, even appendages.

Keywords

Epidermal stem cells Differentiation Plasticity Transdifferentiation Direct conversion Tumorigenesis 

References

  1. 1.
    Sen CK, Gordillo GM, Roy S, Kirsner R, Lambert L, Hunt TK, Gottrup F, Gurtner GC, Longaker MT. Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair Regen. 2009;17:763–71.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Gottrup F. A specialized wound-healing center concept: importance of a multidisciplinary department structure and surgical treatment facilities in the treatment of chronic wounds. Am J Surg. 2004;187:38S–43S.PubMedCrossRefGoogle Scholar
  3. 3.
    Falanga V. Wound healing and its impairment in the diabetic foot. Lancet. 2005;366:1736–43.PubMedCrossRefGoogle Scholar
  4. 4.
    Martin P. Wound healing--aiming for perfect skin regeneration. Science. 1997;276:75–81.PubMedCrossRefGoogle Scholar
  5. 5.
    Stojadinovic O, Brem H, Vouthounis C, Lee B, Fallon J, Stallcup M, Merchant A, Galiano RD, Tomic-Canic M. Molecular pathogenesis of chronic wounds: the role of beta-catenin and c-myc in the inhibition of epithelialization and wound healing. Am J Pathol. 2005;167:59–69.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Stojadinovic O, Pastar I, Vukelic S, Mahoney MG, Brennan D, Krzyzanowska A, Golinko M, Brem H, Tomic-Canic M. Deregulation of keratinocyte differentiation and activation: a hallmark of venous ulcers. J Cell Mol Med. 2008;12:2675–90.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Nakamura M, Tokura Y. Epithelial-mesenchymal transition in the skin. J Dermatol Sci. 2011;61:7–13.PubMedCrossRefGoogle Scholar
  8. 8.
    Hudson LG, Newkirk KM, Chandler HL, Choi C, Fossey SL, Parent AE, Kusewitt DF. Cutaneous wound reepithelialization is compromised in mice lacking functional Slug (Snai2). J Dermatol Sci. 2009;56:19–26.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Savagner P, Kusewitt DF, Carver EA, Magnino F, Choi C, Gridley T, Hudson LG. Developmental transcription factor slug is required for effective re-epithelialization by adult keratinocytes. J Cell Physiol. 2005;202:858–66.PubMedCrossRefGoogle Scholar
  10. 10.
    Dhouailly D, Olivera-Martinez I, Fliniaux I, Missier S, Viallet JP, Thelu J. Skin field formation: morphogenetic events. Int J Dev Biol. 2004;48:85–91.PubMedCrossRefGoogle Scholar
  11. 11.
    Launay C, Fromentoux V, Shi DL, Boucaut JC. A truncated FGF receptor blocks neural induction by endogenous Xenopus inducers. Development. 1996;122:869–80.PubMedGoogle Scholar
  12. 12.
    Fuchs E. Scratching the surface of skin development. Nature. 2007;445:834–42.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Alonso L, Fuchs E. Stem cells in the skin: waste not, Wnt not. Genes Dev. 2003;17:1189–200.PubMedCrossRefGoogle Scholar
  14. 14.
    Ellis T, Gambardella L, Horcher M, Tschanz S, Capol J, Bertram P, Jochum W, Barrandon Y, Busslinger M. The transcriptional repressor CDP (Cutl1) is essential for epithelial cell differentiation of the lung and the hair follicle. Genes Dev. 2001;15:2307–19.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Paus R, Muller-Rover S, Van Der Veen C, Maurer M, Eichmuller S, Ling G, Hofmann U, Foitzik K, Mecklenburg L, Handjiski B. A comprehensive guide for the recognition and classification of distinct stages of hair follicle morphogenesis. J Investig Dermatol. 1999;113:523–32.PubMedCrossRefGoogle Scholar
  16. 16.
    Iida M, Ihara S, Matsuzaki T. Hair cycle-dependent changes of alkaline phosphatase activity in the mesenchyme and epithelium in mouse vibrissal follicles. Develop Growth Differ. 2007;49:185–95.CrossRefGoogle Scholar
  17. 17.
    Kumar A, Velloso CP, Imokawa Y, Brockes JP. Plasticity of retrovirus-labelled myotubes in the newt limb regeneration blastema. Dev Biol. 2000;218:125–36.PubMedCrossRefGoogle Scholar
  18. 18.
    Combates NJ, Chuong CM, Stenn KS, Prouty SM. Expression of two Ig family adhesion molecules in the murine hair cycle: DCC in the bulge epithelia and NCAM in the follicular papilla. J Investig Dermatol. 1997;109:672–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Hardy MH. The secret life of the hair follicle. Trends Genet. 1992;8:55–61.PubMedCrossRefGoogle Scholar
  20. 20.
    Kobayashi K, Nishimura E. Ectopic growth of mouse whiskers from implanted lengths of plucked vibrissa follicles. J Investig Dermatol. 1989;92:278–82.PubMedCrossRefGoogle Scholar
  21. 21.
    Weinberg WC, Goodman LV, George C, Morgan DL, Ledbetter S, Yuspa SH, Lichti U. Reconstitution of hair follicle development in vivo: determination of follicle formation, hair growth, and hair quality by dermal cells. J Investig Dermatol. 1993;100:229–36.PubMedCrossRefGoogle Scholar
  22. 22.
    Lichti U, Weinberg WC, Goodman L, Ledbetter S, Dooley T, Morgan D, Yuspa SH. In vivo regulation of murine hair growth: insights from grafting defined cell populations onto nude mice. J Investig Dermatol. 1993;101:124S–9S.PubMedCrossRefGoogle Scholar
  23. 23.
    Osada A, Iwabuchi T, Kishimoto J, Hamazaki TS, Okochi H. Long-term culture of mouse vibrissal dermal papilla cells and de novo hair follicle induction. Tissue Eng. 2007;13:975–82.PubMedCrossRefGoogle Scholar
  24. 24.
    Ito M, Sato Y. Dynamic ultrastructural changes of the connective tissue sheath of human hair follicles during hair cycle. Arch Dermatol Res. 1990;282:434–41.PubMedCrossRefGoogle Scholar
  25. 25.
    Stenn KS, Paus R. What controls hair follicle cycling? Exp Dermatol. 1999;8:229–33. discussion 233-226.PubMedCrossRefGoogle Scholar
  26. 26.
    Chase HB. Growth of the hair. Physiol Rev. 1954;34:113–26.PubMedCrossRefGoogle Scholar
  27. 27.
    Paus R, Stenn KS, Link RE. Telogen skin contains an inhibitor of hair growth. Br J Dermatol. 1990;122:777–84.PubMedCrossRefGoogle Scholar
  28. 28.
    Botchkarev VA, Botchkareva NV, Roth W, Nakamura M, Chen LH, Herzog W, Lindner G, McMahon JA, Peters C, Lauster R, McMahon AP, Paus R. Noggin is a mesenchymally derived stimulator of hair-follicle induction. Nat Cell Biol. 1999;1:158–64.PubMedCrossRefGoogle Scholar
  29. 29.
    Cotsarelis G, Sun TT, Lavker RM. Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell. 1990;61:1329–37.PubMedCrossRefGoogle Scholar
  30. 30.
    Sun TT, Cotsarelis G, Lavker RM. Hair follicular stem cells: the bulge-activation hypothesis. J Investig Dermatol. 1991;96:77S–8S.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Fuchs E, Merrill BJ, Jamora C, DasGupta R. At the roots of a never-ending cycle. Dev Cell. 2001;1:13–25.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Taylor G, Lehrer MS, Jensen PJ, Sun TT, Lavker RM. Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell. 2000;102:451–61.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Oshima H, Rochat A, Kedzia C, Kobayashi K, Barrandon Y. Morphogenesis and renewal of hair follicles from adult multipotent stem cells. Cell. 2001;104:233–45.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Lindner G, Botchkarev VA, Botchkareva NV, Ling G, van der Veen C, Paus R. Analysis of apoptosis during hair follicle regression (catagen). Am J Pathol. 1997;151:1601–17.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Alonso L, Fuchs E. The hair cycle. J Cell Sci. 2006;119:391–3.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Panteleyev AA, Jahoda CA, Christiano AM. Hair follicle predetermination. J Cell Sci. 2001;114:3419–31.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Jindo T, Tsuboi R, Takamori K, Ogawa H. Local injection of hepatocyte growth factor/scatter factor (HGF/SF) alters cyclic growth of murine hair follicles. J Investig Dermatol. 1998;110:338–42.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Lindner G, Menrad A, Gherardi E, Merlino G, Welker P, Handjiski B, Roloff B, Paus R. Involvement of hepatocyte growth factor/scatter factor and met receptor signaling in hair follicle morphogenesis and cycling. FASEB J. 2000;14:319–32.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Paus R, Maurer M, Slominski A, Czarnetzki BM. Mast cell involvement in murine hair growth. Dev Biol. 1994;163:230–40.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Philp D, Nguyen M, Scheremeta B, St-Surin S, Villa AM, Orgel A, Kleinman HK, Elkin M. Thymosin beta4 increases hair growth by activation of hair follicle stem cells. FASEB J. 2004;18:385–7.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Muller-Rover S, Peters EJ, Botchkarev VA, Panteleyev A, Paus R. Distinct patterns of NCAM expression are associated with defined stages of murine hair follicle morphogenesis and regression. J Histochem Cytochem. 1998;46:1401–10.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Wilson C, Cotsarelis G, Wei ZG, Fryer E, Margolis-Fryer J, Ostead M, Tokarek R, Sun TT, Lavker RM. Cells within the bulge region of mouse hair follicle transiently proliferate during early anagen: heterogeneity and functional differences of various hair cycles. Differentiation. 1994;55:127–36.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Muller-Rover S, Bulfone-Paus S, Handjiski B, Welker P, Sundberg JP, McKay IA, Botchkarev VA, Paus R. Intercellular adhesion molecule-1 and hair follicle regression. J Histochem Cytochem. 2000;48:557–68.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Sato N, Leopold PL, Crystal RG. Induction of the hair growth phase in postnatal mice by localized transient expression of Sonic hedgehog. J Clin Investig. 1999;104:855–64.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Zhou P, Byrne C, Jacobs J, Fuchs E. Lymphoid enhancer factor 1 directs hair follicle patterning and epithelial cell fate. Genes Dev. 1995;9:700–13.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    DasGupta R, Fuchs E. Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation. Development. 1999;126:4557–68.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Tsuboi R, Yamazaki M, Matsuda Y, Uchida K, Ueki R, Ogawa H. Antisense oligonucleotide targeting fibroblast growth factor receptor (FGFR)-1 stimulates cellular activity of hair follicles in an in vitro organ culture system. Int J Dermatol. 2007;46:259–63.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Mak KK, Chan SY. Epidermal growth factor as a biologic switch in hair growth cycle. J Biol Chem. 2003;278:26120–6.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Weger N, Schlake T. Igf-I signalling controls the hair growth cycle and the differentiation of hair shafts. J Investig Dermatol. 2005;125:873–82.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Sowden HM, Karoo RO, Tobin DJ. Transforming growth factor-beta receptor II is preferentially expressed in the companion layer of the human anagen hair follicle. Br J Dermatol. 2007;157:161–4.PubMedCrossRefGoogle Scholar
  51. 51.
    Darnell JE Jr. STATs and gene regulation. Science. 1997;277:1630–5.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Sano S, Kira M, Takagi S, Yoshikawa K, Takeda J, Itami S. Two distinct signaling pathways in hair cycle induction: Stat3-dependent and -independent pathways. Proc Natl Acad Sci U S A. 2000;97:13824–9.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Tumbar T, Guasch G, Greco V, Blanpain C, Lowry WE, Rendl M, Fuchs E. Defining the epithelial stem cell niche in skin. Science. 2004;303:359–63.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Mackenzie IC. Retroviral transduction of murine epidermal stem cells demonstrates clonal units of epidermal structure. J Investig Dermatol. 1997;109:377–83.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Ito M, Yang Z, Andl T, Cui C, Kim N, Millar SE, Cotsarelis G. Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding. Nature. 2007;447:316–20.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Kaur P. Interfollicular epidermal stem cells: identification, challenges, potential. J Investig Dermatol. 2006;126:1450–8.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Jones PH, Watt FM. Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integrin function and expression. Cell. 1993;73:713–24.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Horsley V, O’Carroll D, Tooze R, Ohinata Y, Saitou M, Obukhanych T, Nussenzweig M, Tarakhovsky A, Fuchs E. Blimp1 defines a progenitor population that governs cellular input to the sebaceous gland. Cell. 2006;126:597–609.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Jensen UB, Yan X, Triel C, Woo SH, Christensen R, Owens DM. A distinct population of clonogenic and multipotent murine follicular keratinocytes residing in the upper isthmus. J Cell Sci. 2008;121:609–17.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Morris RJ, Liu Y, Marles L, Yang Z, Trempus C, Li S, Lin JS, Sawicki JA, Cotsarelis G. Capturing and profiling adult hair follicle stem cells. Nat Biotechnol. 2004;22:411–7.CrossRefGoogle Scholar
  61. 61.
    Ito M, Liu Y, Yang Z, Nguyen J, Liang F, Morris RJ, Cotsarelis G. Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat Med. 2005;11:1351–4.PubMedCrossRefGoogle Scholar
  62. 62.
    Silva-Vargas V, Lo Celso C, Giangreco A, Ofstad T, Prowse DM, Braun KM, Watt FM. Beta-catenin and Hedgehog signal strength can specify number and location of hair follicles in adult epidermis without recruitment of bulge stem cells. Dev Cell. 2005;9:121–31.PubMedCrossRefGoogle Scholar
  63. 63.
    Nguyen H, Merrill BJ, Polak L, Nikolova M, Rendl M, Shaver TM, Pasolli HA, Fuchs E. Tcf3 and Tcf4 are essential for long-term homeostasis of skin epithelia. Nat Genet. 2009;41:1068–75.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Blanpain C, Fuchs E. Stem cell plasticity. Plasticity of epithelial stem cells in tissue regeneration. Science. 2014;344:1242281.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Fuchs E, Tumbar T, Guasch G. Socializing with the neighbors: stem cells and their niche. Cell. 2004;116:769–78.PubMedCrossRefGoogle Scholar
  66. 66.
    Cotsarelis G. Epithelial stem cells: a folliculocentric view. J Investig Dermatol. 2006;126:1459–68.PubMedCrossRefGoogle Scholar
  67. 67.
    Trempus CS, Morris RJ, Bortner CD, Cotsarelis G, Faircloth RS, Reece JM, Tennant RW. Enrichment for living murine keratinocytes from the hair follicle bulge with the cell surface marker CD34. J Investig Dermatol. 2003;120:501–11.PubMedGoogle Scholar
  68. 68.
    Blanpain C, Lowry WE, Geoghegan A, Polak L, Fuchs E. Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell. 2004;118:635–48.PubMedCrossRefGoogle Scholar
  69. 69.
    Tani H, Morris RJ, Kaur P. Enrichment for murine keratinocyte stem cells based on cell surface phenotype. Proc Natl Acad Sci U S A. 2000;97:10960–5.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Jaks V, Barker N, Kasper M, van Es JH, Snippert HJ, Clevers H, Toftgard R. Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nat Genet. 2008;40:1291–9.PubMedCrossRefGoogle Scholar
  71. 71.
    Levy V, Lindon C, Harfe BD, Morgan BA. Distinct stem cell populations regenerate the follicle and interfollicular epidermis. Dev Cell. 2005;9:855–61.PubMedCrossRefGoogle Scholar
  72. 72.
    Greco V, Chen T, Rendl M, Schober M, Pasolli HA, Stokes N, Dela Cruz-Racelis J, Fuchs E. A two-step mechanism for stem cell activation during hair regeneration. Cell Stem Cell. 2009;4:155–69.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Kobielak K, Stokes N, de la Cruz J, Polak L, Fuchs E. Loss of a quiescent niche but not follicle stem cells in the absence of bone morphogenetic protein signaling. Proc Natl Acad Sci U S A. 2007;104:10063–8.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Lowry WE, Blanpain C, Nowak JA, Guasch G, Lewis L, Fuchs E. Defining the impact of beta-catenin/Tcf transactivation on epithelial stem cells. Genes Dev. 2005;19:1596–611.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Levy V, Lindon C, Zheng Y, Harfe BD, Morgan BA. Epidermal stem cells arise from the hair follicle after wounding. FASEB J. 2007;21:1358–66.PubMedCrossRefGoogle Scholar
  76. 76.
    Nowak JA, Polak L, Pasolli HA, Fuchs E. Hair follicle stem cells are specified and function in early skin morphogenesis. Cell Stem Cell. 2008;3:33–43.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Petersson M, Brylka H, Kraus A, John S, Rappl G, Schettina P, Niemann C. TCF/Lef1 activity controls establishment of diverse stem and progenitor cell compartments in mouse epidermis. EMBO J. 2011;30:3004–18.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Nijhof JG, Braun KM, Giangreco A, van Pelt C, Kawamoto H, Boyd RL, Willemze R, Mullenders LH, Watt FM, de Gruijl FR, van Ewijk W. The cell-surface marker MTS24 identifies a novel population of follicular keratinocytes with characteristics of progenitor cells. Development. 2006;133:3027–37.PubMedCrossRefGoogle Scholar
  79. 79.
    Snippert HJ, Haegebarth A, Kasper M, Jaks V, van Es JH, Barker N, van de Wetering M, van den Born M, Begthel H, Vries RG, Stange DE, Toftgard R, Clevers H. Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin. Science. 2010;327:1385–9.PubMedCrossRefGoogle Scholar
  80. 80.
    Jensen KB, Collins CA, Nascimento E, Tan DW, Frye M, Itami S, Watt FM. Lrig1 expression defines a distinct multipotent stem cell population in mammalian epidermis. Cell Stem Cell. 2009;4:427–39.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Brownell I, Guevara E, Bai CB, Loomis CA, Joyner AL. Nerve-derived sonic hedgehog defines a niche for hair follicle stem cells capable of becoming epidermal stem cells. Cell Stem Cell. 2011;8:552–65.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Van Keymeulen A, Rocha AS, Ousset M, Beck B, Bouvencourt G, Rock J, Sharma N, Dekoninck S, Blanpain C. Distinct stem cells contribute to mammary gland development and maintenance. Nature. 2011;479:189–93.PubMedCrossRefGoogle Scholar
  83. 83.
    Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smyth GK, Asselin-Labat ML, Wu L, Lindeman GJ, Visvader JE. Generation of a functional mammary gland from a single stem cell. Nature. 2006;439:84–8.PubMedCrossRefGoogle Scholar
  84. 84.
    Biedermann T, Pontiggia L, Bottcher-Haberzeth S, Tharakan S, Braziulis E, Schiestl C, Meuli M, Reichmann E. Human eccrine sweat gland cells can reconstitute a stratified epidermis. J Investig Dermatol. 2010;130:1996–2009.PubMedCrossRefGoogle Scholar
  85. 85.
    Fu XB, Sun TZ, Li XK, Sheng ZY. Morphological and distribution characteristics of sweat glands in hypertrophic scar and their possible effects on sweat gland regeneration. Chin Med J. 2005;118:186–91.PubMedGoogle Scholar
  86. 86.
    Schon M, Benwood J, O’Connell-Willstaedt T, Rheinwald JG. Human sweat gland myoepithelial cells express a unique set of cytokeratins and reveal the potential for alternative epithelial and mesenchymal differentiation states in culture. J Cell Sci. 1999;112(Pt 12):1925–36.PubMedGoogle Scholar
  87. 87.
    Xie J, Yao B, Han Y, Shang T, Gao D, Yang S, Ma K, Huang S, Fu X. Cytokeratin expression at different stages in sweat gland development of C57BL/6J Mice. Int J Low Extrem Wounds. 2015;14:365–71.PubMedCrossRefGoogle Scholar
  88. 88.
    Xie J, Yao B, Han Y, Huang S, Fu X. Skin appendage-derived stem cells: cell biology and potential for wound repair. Burns Trauma. 2016;4:38.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Cottle DL, Kretzschmar K, Schweiger PJ, Quist SR, Gollnick HP, Natsuga K, Aoyagi S, Watt FM. c-MYC-induced sebaceous gland differentiation is controlled by an androgen receptor/p53 axis. Cell Rep. 2013;3:427–41.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Page ME, Lombard P, Ng F, Gottgens B, Jensen KB. The epidermis comprises autonomous compartments maintained by distinct stem cell populations. Cell Stem Cell. 2013;13:471–82.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Chunmeng S, Tianmin C. Skin: a promising reservoir for adult stem cell populations. Med Hypotheses. 2004;62:683–8.PubMedCrossRefGoogle Scholar
  92. 92.
    Myers TJ, Granero-Molto F, Longobardi L, Li T, Yan Y, Spagnoli A. Mesenchymal stem cells at the intersection of cell and gene therapy. Expert Opin Biol Ther. 2010;10:1663–79.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Zhang J, Huang X, Wang H, Liu X, Zhang T, Wang Y, Hu D. The challenges and promises of allogeneic mesenchymal stem cells for use as a cell-based therapy. Stem Cell Res Ther. 2015;6:234.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Falanga V, Iwamoto S, Chartier M, Yufit T, Butmarc J, Kouttab N, Shrayer D, Carson P. Autologous bone marrow-derived cultured mesenchymal stem cells delivered in a fibrin spray accelerate healing in murine and human cutaneous wounds. Tissue Eng. 2007;13:1299–312.PubMedCrossRefGoogle Scholar
  95. 95.
    Vojtassak J, Danisovic L, Kubes M, Bakos D, Jarabek L, Ulicna M, Blasko M. Autologous biograft and mesenchymal stem cells in treatment of the diabetic foot. Neuro Endocrinol Lett. 2006;27(Suppl 2):134–7.PubMedGoogle Scholar
  96. 96.
    de la Garza-Rodea AS, Knaan-Shanzer S, van Bekkum DW. Pressure ulcers: description of a new model and use of mesenchymal stem cells for repair. Dermatology. 2011;223:266–84.PubMedCrossRefGoogle Scholar
  97. 97.
    Gardien KL, Middelkoop E, Ulrich MM. Progress towards cell-based burn wound treatments. Regen Med. 2014;9:201–18.PubMedCrossRefGoogle Scholar
  98. 98.
    Liu L, Yu Y, Hou Y, Chai J, Duan H, Chu W, Zhang H, Hu Q, Du J. Human umbilical cord mesenchymal stem cells transplantation promotes cutaneous wound healing of severe burned rats. PLoS One. 2014;9:e88348.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Stoff A, Rivera AA, Sanjib Banerjee N, Moore ST, Michael Numnum T, Espinosa-de-Los-Monteros A, Richter DF, Siegal GP, Chow LT, Feldman D, Vasconez LO, Michael Mathis J, Stoff-Khalili MA, Curiel DT. Promotion of incisional wound repair by human mesenchymal stem cell transplantation. Exp Dermatol. 2009;18:362–9.PubMedCrossRefGoogle Scholar
  100. 100.
    Bura A, Planat-Benard V, Bourin P, Silvestre JS, Gross F, Grolleau JL, Saint-Lebese B, Peyrafitte JA, Fleury S, Gadelorge M, Taurand M, Dupuis-Coronas S, Leobon B, Casteilla L. Phase I trial: the use of autologous cultured adipose-derived stroma/stem cells to treat patients with non-revascularizable critical limb ischemia. Cytotherapy. 2014;16:245–57.PubMedCrossRefGoogle Scholar
  101. 101.
    Nuschke A. Activity of mesenchymal stem cells in therapies for chronic skin wound healing. Organogenesis. 2014;10:29–37.PubMedCrossRefGoogle Scholar
  102. 102.
    Paunescu V, Deak E, Herman D, Siska IR, Tanasie G, Bunu C, Anghel S, Tatu CA, Oprea TI, Henschler R, Ruster B, Bistrian R, Seifried E. In vitro differentiation of human mesenchymal stem cells to epithelial lineage. J Cell Mol Med. 2007;11:502–8.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Tang QQ, Lane MD. Adipogenesis: from stem cell to adipocyte. Annu Rev Biochem. 2012;81:715–36.PubMedCrossRefGoogle Scholar
  104. 104.
    Oswald J, Boxberger S, Jorgensen B, Feldmann S, Ehninger G, Bornhauser M, Werner C. Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells. 2004;22:377–84.PubMedCrossRefGoogle Scholar
  105. 105.
    Wu Y, Huang S, Enhe J, Ma K, Yang S, Sun T, Fu X. Bone marrow-derived mesenchymal stem cell attenuates skin fibrosis development in mice. Int Wound J. 2014;11:701–10.PubMedCrossRefGoogle Scholar
  106. 106.
    Ward CL, Sanchez CJ Jr, Pollot BE, Romano DR, Hardy SK, Becerra SC, Rathbone CR, Wenke JC. Soluble factors from biofilms of wound pathogens modulate human bone marrow-derived stromal cell differentiation, migration, angiogenesis, and cytokine secretion. BMC Microbiol. 2015;15:75.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Wu Y, Zhao RC, Tredget EE. Concise review: bone marrow-derived stem/progenitor cells in cutaneous repair and regeneration. Stem Cells. 2010;28:905–15.PubMedPubMedCentralGoogle Scholar
  108. 108.
    Shabbir A, Cox A, Rodriguez-Menocal L, Salgado M, Van Badiavas E. Mesenchymal stem cell exosomes induce proliferation and migration of normal and chronic wound fibroblasts, and enhance angiogenesis in vitro. Stem Cells Dev. 2015;24:1635–47.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Mebarki M, Coquelin L, Layrolle P, Battaglia S, Tossou M, Hernigou P, Rouard H, Chevallier N. Enhanced human bone marrow mesenchymal stromal cell adhesion on scaffolds promotes cell survival and bone formation. Acta Biomater. 2017;59:94–107.PubMedCrossRefGoogle Scholar
  110. 110.
    Kim WS, Park BS, Sung JH, Yang JM, Park SB, Kwak SJ, Park JS. Wound healing effect of adipose-derived stem cells: a critical role of secretory factors on human dermal fibroblasts. J Dermatol Sci. 2007;48:15–24.PubMedCrossRefGoogle Scholar
  111. 111.
    Lee EY, Xia Y, Kim WS, Kim MH, Kim TH, Kim KJ, Park BS, Sung JH. Hypoxia-enhanced wound-healing function of adipose-derived stem cells: increase in stem cell proliferation and up-regulation of VEGF and bFGF. Wound Repair Regen. 2009;17:540–7.PubMedCrossRefGoogle Scholar
  112. 112.
    Wettstein R, Savic M, Pierer G, Scheufler O, Haug M, Halter J, Gratwohl A, Baumberger M, Schaefer DJ, Kalbermatten DF. Progenitor cell therapy for sacral pressure sore: a pilot study with a novel human chronic wound model. Stem Cell Res Ther. 2014;5:18.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Fu X, Sun X. Can hematopoietic stem cells be an alternative source for skin regeneration? Ageing Res Rev. 2009;8:244–9.PubMedCrossRefGoogle Scholar
  114. 114.
    Kirby GT, Mills SJ, Cowin AJ, Smith LE. Stem cells for cutaneous wound healing. Biomed Res Int. 2015;2015:285869.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Kim JY, Suh W. Stem cell therapy for dermal wound healing. Int J Stem Cells. 2010;3:29–31.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Suh W, Kim KL, Kim JM, Shin IS, Lee YS, Lee JY, Jang HS, Lee JS, Byun J, Choi JH, Jeon ES, Kim DK. Transplantation of endothelial progenitor cells accelerates dermal wound healing with increased recruitment of monocytes/macrophages and neovascularization. Stem Cells. 2005;23:1571–8.PubMedCrossRefGoogle Scholar
  117. 117.
    Kim KL, Han DK, Park K, Song SH, Kim JY, Kim JM, Ki HY, Yie SW, Roh CR, Jeon ES, Kim DK, Suh W. Enhanced dermal wound neovascularization by targeted delivery of endothelial progenitor cells using an RGD-g-PLLA scaffold. Biomaterials. 2009;30:3742–8.PubMedCrossRefGoogle Scholar
  118. 118.
    Di Santo S, Yang Z, Wyler von Ballmoos M, Voelzmann J, Diehm N, Baumgartner I, Kalka C. Novel cell-free strategy for therapeutic angiogenesis: in vitro generated conditioned medium can replace progenitor cell transplantation. PLoS One. 2009;4:e5643.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Fernandes KJ, McKenzie IA, Mill P, Smith KM, Akhavan M, Barnabe-Heider F, Biernaskie J, Junek A, Kobayashi NR, Toma JG, Kaplan DR, Labosky PA, Rafuse V, Hui CC, Miller FD. A dermal niche for multipotent adult skin-derived precursor cells. Nat Cell Biol. 2004;6:1082–93.PubMedCrossRefGoogle Scholar
  120. 120.
    Fernandes KJ, Toma JG, Miller FD. Multipotent skin-derived precursors: adult neural crest-related precursors with therapeutic potential. Philos Trans R Soc Lond Ser B Biol Sci. 2008;363:185–98.CrossRefGoogle Scholar
  121. 121.
    Yu H, Fang D, Kumar SM, Li L, Nguyen TK, Acs G, Herlyn M, Xu X. Isolation of a novel population of multipotent adult stem cells from human hair follicles. Am J Pathol. 2006;168:1879–88.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Uchugonova A, Duong J, Zhang N, Konig K, Hoffman RM. The bulge area is the origin of nestin-expressing pluripotent stem cells of the hair follicle. J Cell Biochem. 2011;112:2046–50.PubMedCrossRefGoogle Scholar
  123. 123.
    Sun X, Fu X, Han W, Zhao M, Chalmers L. Epidermal stem cells: an update on their potential in regenerative medicine. Expert Opin Biol Ther. 2013;13:901–10.PubMedCrossRefGoogle Scholar
  124. 124.
    Mii S, Duong J, Tome Y, Uchugonova A, Liu F, Amoh Y, Saito N, Katsuoka K, Hoffman RM. Nestin-expressing Hair-Follicle-Associated Pluripotent (HAP) stem cells promote whisker sensory-nerve growth in long-term 3D-Gelfoam(R) histoculture. Methods Mol Biol. 2016;1453:39–47.PubMedCrossRefGoogle Scholar
  125. 125.
    Amoh Y, Li L, Katsuoka K, Penman S, Hoffman RM. Multipotent nestin-positive, keratin-negative hair-follicle bulge stem cells can form neurons. Proc Natl Acad Sci U S A. 2005;102:5530–4.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Amoh Y, Katsuoka K, Hoffman RM. The advantages of hair follicle pluripotent stem cells over embryonic stem cells and induced pluripotent stem cells for regenerative medicine. J Dermatol Sci. 2010;60:131–7.PubMedCrossRefGoogle Scholar
  127. 127.
    Clark RA, Yamanaka K, Bai M, Dowgiert R, Kupper TS. Human skin cells support thymus-independent T cell development. J Clin Investig. 2005;115:3239–49.PubMedCrossRefGoogle Scholar
  128. 128.
    Liang L, Bickenbach JR. Somatic epidermal stem cells can produce multiple cell lineages during development. Stem Cells. 2002;20:21–31.PubMedCrossRefGoogle Scholar
  129. 129.
    Li J, Greco V, Guasch G, Fuchs E, Mombaerts P. Mice cloned from skin cells. Proc Natl Acad Sci U S A. 2007;104:2738–43.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Aasen T, Raya A, Barrero MJ, Garreta E, Consiglio A, Gonzalez F, Vassena R, Bilic J, Pekarik V, Tiscornia G, Edel M, Boue S, Izpisua Belmonte JC. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol. 2008;26:1276–84.PubMedCrossRefGoogle Scholar
  131. 131.
    Bull JJ, Muller-Rover S, Patel SV, Chronnell CM, McKay IA, Philpott MP. Contrasting localization of c-Myc with other Myc superfamily transcription factors in the human hair follicle and during the hair growth cycle. J Investig Dermatol. 2001;116:617–22.PubMedCrossRefGoogle Scholar
  132. 132.
    Barajon I, Rumio C, Donetti E, Imberti A, Brivio M, Castano P. Pattern of expression of c-Myc, Max and Bin1 in human anagen hair follicles. Br J Dermatol. 2001;144:1193–203.PubMedCrossRefGoogle Scholar
  133. 133.
    Gandarillas A, Watt FM. c-Myc promotes differentiation of human epidermal stem cells. Genes Dev. 1997;11:2869–82.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Gebhardt A, Frye M, Herold S, Benitah SA, Braun K, Samans B, Watt FM, Elsasser HP, Eilers M. Myc regulates keratinocyte adhesion and differentiation via complex formation with Miz1. J Cell Biol. 2006;172:139–49.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Segre JA, Bauer C, Fuchs E. Klf4 is a transcription factor required for establishing the barrier function of the skin. Nat Genet. 1999;22:356–60.PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Aoi T, Yae K, Nakagawa M, Ichisaka T, Okita K, Takahashi K, Chiba T, Yamanaka S. Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science. 2008;321:699–702.PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Tsai SY, Clavel C, Kim S, Ang YS, Grisanti L, Lee DF, Kelley K, Rendl M. Oct4 and klf4 reprogram dermal papilla cells into induced pluripotent stem cells. Stem Cells. 2010;28:221–8.PubMedPubMedCentralGoogle Scholar
  138. 138.
    Braun KM, Niemann C, Jensen UB, Sundberg JP, Silva-Vargas V, Watt FM. Manipulation of stem cell proliferation and lineage commitment: visualisation of label-retaining cells in wholemounts of mouse epidermis. Development. 2003;130:5241–55.PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Rompolas P, Mesa KR, Greco V. Spatial organization within a niche as a determinant of stem-cell fate. Nature. 2013;502:513–8.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Schepeler T, Page ME, Jensen KB. Heterogeneity and plasticity of epidermal stem cells. Development. 2014;141:2559–67.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Ge Y, Fuchs E. Stretching the limits: from homeostasis to stem cell plasticity in wound healing and cancer. Nat Rev Genet. 2018;19(5):311.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Lu CP, Polak L, Rocha AS, Pasolli HA, Chen SC, Sharma N, Blanpain C, Fuchs E. Identification of stem cell populations in sweat glands and ducts reveals roles in homeostasis and wound repair. Cell. 2012;150:136–50.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Kasper M, Jaks V, Are A, Bergstrom A, Schwager A, Svard J, Teglund S, Barker N, Toftgard R. Wounding enhances epidermal tumorigenesis by recruiting hair follicle keratinocytes. Proc Natl Acad Sci U S A. 2011;108:4099–104.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Youssef KK, Van Keymeulen A, Lapouge G, Beck B, Michaux C, Achouri Y, Sotiropoulou PA, Blanpain C. Identification of the cell lineage at the origin of basal cell carcinoma. Nat Cell Biol. 2010;12:299–305.PubMedCrossRefGoogle Scholar
  145. 145.
    Wong SY, Reiter JF. Wounding mobilizes hair follicle stem cells to form tumors. Proc Natl Acad Sci U S A. 2011;108:4093–8.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Vidal VP, Chaboissier MC, Lutzkendorf S, Cotsarelis G, Mill P, Hui CC, Ortonne N, Ortonne JP, Schedl A. Sox9 is essential for outer root sheath differentiation and the formation of the hair stem cell compartment. Curr Biol. 2005;15:1340–51.PubMedCrossRefGoogle Scholar
  147. 147.
    Vidal VP, Ortonne N, Schedl A. SOX9 expression is a general marker of basal cell carcinoma and adnexal-related neoplasms. J Cutan Pathol. 2008;35:373–9.PubMedCrossRefGoogle Scholar
  148. 148.
    Schlegelmilch K, Mohseni M, Kirak O, Pruszak J, Rodriguez JR, Zhou D, Kreger BT, Vasioukhin V, Avruch J, Brummelkamp TR, Camargo FD. Yap1 acts downstream of alpha-catenin to control epidermal proliferation. Cell. 2011;144:782–95.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Takeda H, Lyle S, Lazar AJ, Zouboulis CC, Smyth I, Watt FM. Human sebaceous tumors harbor inactivating mutations in LEF1. Nat Med. 2006;12:395–7.PubMedCrossRefGoogle Scholar
  150. 150.
    Lo Celso C, Prowse DM, Watt FM. Transient activation of beta-catenin signalling in adult mouse epidermis is sufficient to induce new hair follicles but continuous activation is required to maintain hair follicle tumours. Development. 2004;131:1787–99.PubMedCrossRefGoogle Scholar
  151. 151.
    Niemann C, Owens DM, Schettina P, Watt FM. Dual role of inactivating Lef1 mutations in epidermis: tumor promotion and specification of tumor type. Cancer Res. 2007;67:2916–21.PubMedCrossRefGoogle Scholar
  152. 152.
    Malanchi I, Peinado H, Kassen D, Hussenet T, Metzger D, Chambon P, Huber M, Hohl D, Cano A, Birchmeier W, Huelsken J. Cutaneous cancer stem cell maintenance is dependent on beta-catenin signalling. Nature. 2008;452:650–3.PubMedCrossRefGoogle Scholar
  153. 153.
    Arwert EN, Hoste E, Watt FM. Epithelial stem cells, wound healing and cancer. Nat Rev Cancer. 2012;12:170–80.PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    Baker CM, Verstuyf A, Jensen KB, Watt FM. Differential sensitivity of epidermal cell subpopulations to beta-catenin-induced ectopic hair follicle formation. Dev Biol. 2010;343:40–50.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Hutchin ME, Kariapper MS, Grachtchouk M, Wang A, Wei L, Cummings D, Liu J, Michael LE, Glick A, Dlugosz AA. Sustained Hedgehog signaling is required for basal cell carcinoma proliferation and survival: conditional skin tumorigenesis recapitulates the hair growth cycle. Genes Dev. 2005;19:214–23.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Dahmane N, Lee J, Robins P, Heller P, Ruiz i Altaba A. Activation of the transcription factor Gli1 and the Sonic hedgehog signalling pathway in skin tumours. Nature. 1997;389:876–81.PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Nilsson M, Unden AB, Krause D, Malmqwist U, Raza K, Zaphiropoulos PG, Toftgard R. Induction of basal cell carcinomas and trichoepitheliomas in mice overexpressing GLI-1. Proc Natl Acad Sci U S A. 2000;97:3438–43.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Sheng H, Goich S, Wang A, Grachtchouk M, Lowe L, Mo R, Lin K, de Sauvage FJ, Sasaki H, Hui CC, Dlugosz AA. Dissecting the oncogenic potential of Gli2: deletion of an NH(2)-terminal fragment alters skin tumor phenotype. Cancer Res. 2002;62:5308–16.PubMedPubMedCentralGoogle Scholar
  159. 159.
    Wang GY, Wang J, Mancianti ML, Epstein EH Jr. Basal cell carcinomas arise from hair follicle stem cells in Ptch1(+/-) mice. Cancer Cell. 2011;19:114–24.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Matic M. A subpopulation of human basal keratinocytes has a low/negative MHC class I expression. Hum Immunol. 2005;66:962–8.PubMedCrossRefPubMedCentralGoogle Scholar
  161. 161.
    Christoph T, Muller-Rover S, Audring H, Tobin DJ, Hermes B, Cotsarelis G, Ruckert R, Paus R. The human hair follicle immune system: cellular composition and immune privilege. Br J Dermatol. 2000;142:862–73.PubMedCrossRefPubMedCentralGoogle Scholar
  162. 162.
    Ojeh N, Pastar I, Tomic-Canic M, Stojadinovic O. Stem cells in skin regeneration, wound healing, and their clinical applications. Int J Mol Sci. 2015;16:25476–501.PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72.PubMedCrossRefPubMedCentralGoogle Scholar
  164. 164.
    Hanna J, Markoulaki S, Schorderet P, Carey BW, Beard C, Wernig M, Creyghton MP, Steine EJ, Cassady JP, Foreman R, Lengner CJ, Dausman JA, Jaenisch R. Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell. 2008;133:250–64.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Itoh M, Kiuru M, Cairo MS, Christiano AM. Generation of keratinocytes from normal and recessive dystrophic epidermolysis bullosa-induced pluripotent stem cells. Proc Natl Acad Sci U S A. 2011;108:8797–802.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA. In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature. 2008;455:627–32.PubMedCrossRefPubMedCentralGoogle Scholar
  167. 167.
    Forsberg M, Carlen M, Meletis K, Yeung MS, Barnabe-Heider F, Persson MA, Aarum J, Frisen J. Efficient reprogramming of adult neural stem cells to monocytes by ectopic expression of a single gene. Proc Natl Acad Sci U S A. 2010;107:14657–61.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Ieda M, Fu JD, Delgado-Olguin P, Vedantham V, Hayashi Y, Bruneau BG, Srivastava D. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell. 2010;142:375–86.PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Takeuchi JK, Bruneau BG. Directed transdifferentiation of mouse mesoderm to heart tissue by defined factors. Nature. 2009;459:708–11.PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Caiazzo M, Dell’Anno MT, Dvoretskova E, Lazarevic D, Taverna S, Leo D, Sotnikova TD, Menegon A, Roncaglia P, Colciago G, Russo G, Carninci P, Pezzoli G, Gainetdinov RR, Gustincich S, Dityatev A, Broccoli V. Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature. 2011;476:224–7.PubMedCrossRefPubMedCentralGoogle Scholar
  171. 171.
    Pfisterer U, Kirkeby A, Torper O, Wood J, Nelander J, Dufour A, Bjorklund A, Lindvall O, Jakobsson J, Parmar M. Direct conversion of human fibroblasts to dopaminergic neurons. Proc Natl Acad Sci U S A. 2011;108:10343–8.PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Vierbuchen T, Wernig M. Direct lineage conversions: unnatural but useful? Nat Biotechnol. 2011;29:892–907.PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Davidson EH. Emerging properties of animal gene regulatory networks. Nature. 2010;468:911–20.PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Mauda-Havakuk M, Litichever N, Chernichovski E, Nakar O, Winkler E, Mazkereth R, Orenstein A, Bar-Meir E, Ravassard P, Meivar-Levy I, Ferber S. Ectopic PDX-1 expression directly reprograms human keratinocytes along pancreatic insulin-producing cells fate. PLoS One. 2011;6:e26298.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Xiaoyan Sun
    • 1
  • Hua Qin
    • 1
  • Siming Yang
    • 1
  • Xiaobing Fu
    • 1
  1. 1.Research Institute of Basic Medical Sciences, General Hospital of PLABeijingChina

Personalised recommendations