Advanced Techniques in Burn Wound Repair

  • Jianglin Tan
  • Gaoxing Luo


In order to facilitate the rate and quality of burn wound healing, many advanced techniques emerged in recent years, which contribute to the improved level of diagnosis and treatment of burn injury. Precise diagnosis; early, modified cooling therapy; and surgical intervention for burn wound healing are discussed firstly in this review. Then some new methods or materials such as modern wound dressing, negative pressure wound therapy, phototherapy, ultrasound therapy, platelet-rich plasma (PRP), and others applied for burn wound healing are addressed in this paper.


Burn injury Wound healing Advanced techniques Negative pressure wound therapy Platelet-rich plasma 


  1. 1.
    Oryan A, Alemzadeh E, Moshiri A. Burn wound healing: present concepts, treatment strategies and future directions. J Wound Care. 2017;26:5–19.CrossRefGoogle Scholar
  2. 2.
    Jackson PC, Hardwicke J, Bamford A, Nightingale P, Wilson Y, Papini R, et al. Revised estimates of mortality from the Birmingham Burn Centre, 2001–2010: a continuing analysis over 65 years. Ann Surg. 2014;259:979–84.CrossRefGoogle Scholar
  3. 3.
    Osler T, Glance LG, Hosmer DW. Simplified estimates of the probability of death after burn injuries: extending and updating the baux score. J Trauma. 2010;68:690–7.CrossRefGoogle Scholar
  4. 4.
    Resch TR, Drake RM, Helmer SD, Jost GD, Osland JS. Estimation of burn depth at burn centers in the United States: a survey. J Burn Care Res. 2014;35:491–7.CrossRefGoogle Scholar
  5. 5.
    Paul DW, Ghassemi P, Ramella-Roman JC, Prindeze NJ, Moffatt LT, Alkhalil A, et al. Noninvasive imaging technologies for cutaneous wound assessment: a review. Wound Repair Regen. 2015;23:149–62.CrossRefGoogle Scholar
  6. 6.
    Shin JY, Yi HS. Diagnostic accuracy of laser Doppler imaging in burn depth assessment: systematic review and meta-analysis. Burns. 2016;42:1369–76.CrossRefGoogle Scholar
  7. 7.
    Lotter O, Held M, Schiefer J, Werner O, Medved F, Schaller HE, et al. Utilization of laser Doppler flowmetry and tissue spectrophotometry for burn depth assessment using a miniature swine model. Wound Repair Regen. 2015;23:132–6.CrossRefGoogle Scholar
  8. 8.
    Ida T, Kawaguchi Y, Kawauchi S, Iwaya K, Tsuda H, Saitoh D, et al. Real-time photoacoustic imaging system for burn diagnosis. J Biomed Opt. 2014;19:086013.CrossRefGoogle Scholar
  9. 9.
    Ragol S, Remer I, Shoham Y, Hazan S, Willenz U, Sinelnikov I, et al. Static laser speckle contrast analysis for noninvasive burn diagnosis using a camera-phone imager. J Biomed Opt. 2015;20:86009.CrossRefGoogle Scholar
  10. 10.
    Renkielska A, Kaczmarek M, Nowakowski A, Grudzinski J, Czapiewski P, Krajewski A, et al. Active dynamic infrared thermal imaging in burn depth evaluation. J Burn Care Res. 2014;35:e294–303.PubMedGoogle Scholar
  11. 11.
    Ganapathy P, Tamminedi T, Qin Y, Nanney L, Cardwell N, Pollins A, et al. Dual-imaging system for burn depth diagnosis. Burns. 2014;40:67–81.CrossRefGoogle Scholar
  12. 12.
    Wright EH, Harris AL, Furniss D. Cooling of burns: mechanisms and models. Burns. 2015;41:882–9.CrossRefGoogle Scholar
  13. 13.
    Baldwin A, Xu J, Attinger D. How to cool a burn: a heat transfer point of view. J Burn Care Res. 2012;33:176–87.CrossRefGoogle Scholar
  14. 14.
    Davies JW. Prompt cooling of burned areas: a review of benefits and the effector mechanisms. Burns Incl Therm Inj. 1982;9:1–6.CrossRefGoogle Scholar
  15. 15.
    Rizzo JA, Burgess P, Cartie RJ, Prasad BM. Moderate systemic hypothermia decreases burn depth progression. Burns. 2013;39:436–44.CrossRefGoogle Scholar
  16. 16.
    Mosier MJ, Gibran NS. Surgical excision of the burn wound. Clin Plast Surg. 2009;36:617–25.CrossRefGoogle Scholar
  17. 17.
    Gacto-Sanchez P. Surgical treatment and management of the severely burn patient: review and update. Med Intensiva. 2017;41:356–64.CrossRefGoogle Scholar
  18. 18.
    Keshavarzi A, Ayaz M, Dehghankhalili M. Ultra-early versus early excision and grafting for thermal burns up to 60% total body surface area; a historical cohort study. Bull Emerg Trauma. 2016;4:197–201.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Gallaher JR, Mjuweni S, Shah M, Cairns BA, Charles AG. Timing of early excision and grafting following burn in sub-Saharan Africa. Burns. 2015;41:1353–9.CrossRefGoogle Scholar
  20. 20.
    Cordts T, Horter J, Vogelpohl J, Kremer T, Kneser U, Hernekamp JF. Enzymatic debridement for the treatment of severely burned upper extremities - early single center experiences. BMC Dermatol. 2016;16:8.CrossRefGoogle Scholar
  21. 21.
    Schulz A, Shoham Y, Rosenberg L, Rothermund I, Perbix W, Christian Fuchs P, et al. Enzymatic versus traditional surgical debridement of severely burned hands: a comparison of selectivity, efficacy, healing time, and three-month scar quality. J Burn Care Res. 2017;38:e745–e55.CrossRefGoogle Scholar
  22. 22.
    Kakagia DD, Karadimas EJ. The efficacy of versajet hydrosurgery system in burn surgery. A systematic review. J Burn Care Res. 2018;39(2):188–200.PubMedGoogle Scholar
  23. 23.
    Klein MB, Hunter S, Heimbach DM, Engrav LH, Honari S, Gallery E, et al. The Versajet water dissector: a new tool for tangential excision. J Burn Care Rehabil. 2005;26:483–7.CrossRefGoogle Scholar
  24. 24.
    Kadam D. Novel expansion techniques for skin grafts. Indian J Plast Surg. 2016;49:5–15.CrossRefGoogle Scholar
  25. 25.
    Singh M, Nuutila K, Kruse C, Robson MC, Caterson E, Eriksson E. Challenging the conventional therapy: emerging skin graft techniques for wound healing. Plast Reconstr Surg. 2015;136:524e–30e.CrossRefGoogle Scholar
  26. 26.
    Ter Horst B, Chouhan G, Moiemen NS, Grover LM. Advances in keratinocyte delivery in burn wound care. Adv Drug Deliv Rev. 2018;123:18–32.CrossRefGoogle Scholar
  27. 27.
    Das S, Baker AB. Biomaterials and nanotherapeutics for enhancing skin wound healing. Front Bioeng Biotechnol. 2016;4:82.CrossRefGoogle Scholar
  28. 28.
    Mohamad N, Mohd Amin MC, Pandey M, Ahmad N, Rajab NF. Bacterial cellulose/acrylic acid hydrogel synthesized via electron beam irradiation: accelerated burn wound healing in an animal model. Carbohydr Polym. 2014;114:312–20.CrossRefGoogle Scholar
  29. 29.
    Strong AL, Bennett DK, Spreen EB, Adhvaryu DV, Littleton JC, Mencer EJ. Fetal bovine collagen matrix in the treatment of a full thickness burn wound: a case report with long-term follow-up. J Burn Care Res. 2016;37:e292–7.CrossRefGoogle Scholar
  30. 30.
    Yergoz F, Hastar N, Cimenci CE, Ozkan AD, Tekinay T, Guler MO, et al. Heparin mimetic peptide nanofiber gel promotes regeneration of full thickness burn injury. Biomaterials. 2017;134:117–27.CrossRefGoogle Scholar
  31. 31.
    Dhall S, Silva JP, Liu Y, Hrynyk M, Garcia M, Chan A, et al. Release of insulin from PLGA-alginate dressing stimulates regenerative healing of burn wounds in rats. Clin Sci (Lond). 2015;129:1115–29.CrossRefGoogle Scholar
  32. 32.
    Mofazzal Jahromi MA, Sahandi Zangabad P, Moosavi Basri SM, Sahandi Zangabad K, Ghamarypour A, Aref AR, et al. Nanomedicine and advanced technologies for burns: preventing infection and facilitating wound healing. Adv Drug Deliv Rev. 2018;123:33–64.CrossRefGoogle Scholar
  33. 33.
    Zarrintaj P, Moghaddam AS, Manouchehri S, Atoufi Z, Amiri A, Amirkhani MA, et al. Can regenerative medicine and nanotechnology combine to heal wounds? The search for the ideal wound dressing. Nanomedicine (Lond). 2017;12(19):2403–22.CrossRefGoogle Scholar
  34. 34.
    Shams E, Yeganeh H, Naderi-Manesh H, Gharibi R, Mohammad Hassan Z. Polyurethane/siloxane membranes containing graphene oxide nanoplatelets as antimicrobial wound dressings: in vitro and in vivo evaluations. J Mater Sci Mater Med. 2017;28:75.CrossRefGoogle Scholar
  35. 35.
    Teng SC. Use of negative pressure wound therapy in burn patients. Int Wound J. 2016;13(Suppl 3):15–8.CrossRefGoogle Scholar
  36. 36.
    Kantak NA, Mistry R, Varon DE, Halvorson EG. Negative pressure wound therapy for burns. Clin Plast Surg. 2017;44:671–7.CrossRefGoogle Scholar
  37. 37.
    Kamolz LP, Andel H, Haslik W, Winter W, Meissl G, Frey M. Use of subatmospheric pressure therapy to prevent burn wound progression in human: first experiences. Burns. 2004;30:253–8.CrossRefGoogle Scholar
  38. 38.
    Fischer S, Wall J, Pomahac B, Riviello R, Halvorson EG. Extra-large negative pressure wound therapy dressings for burns - initial experience with technique, fluid management, and outcomes. Burns. 2016;42:457–65.CrossRefGoogle Scholar
  39. 39.
    Low OW, Chong SJ, Tan BK. The enhanced total body wrap--the new frontier in dressing care for burns. Burns. 2013;39:1420–2.CrossRefGoogle Scholar
  40. 40.
    Kantak NA, Mistry R, Halvorson EG. A review of negative-pressure wound therapy in the management of burn wounds. Burns. 2016;42:1623–33.CrossRefGoogle Scholar
  41. 41.
    Dumville JC, Munson C, Christie J. Negative pressure wound therapy for partial-thickness burns. Cochrane Database Syst Rev. 2014;12:Cd006215.Google Scholar
  42. 42.
    Aleem NA, Aslam M, Zahid MF, Rahman AJ, Rehman FU. Treatment of burn wound infection using ultraviolet light: a case report. J Am Coll Clin Wound Spec. 2013;5:19–22.CrossRefGoogle Scholar
  43. 43.
    Dai T, Gupta A, Huang YY, Yin R, Murray CK, Vrahas MS, et al. Blue light rescues mice from potentially fatal Pseudomonas aeruginosa burn infection: efficacy, safety, and mechanism of action. Antimicrob Agents Chemother. 2013;57:1238–45.CrossRefGoogle Scholar
  44. 44.
    Mester E, Szende B, Gartner P. The effect of laser beams on the growth of hair in mice. Radiobiol Radiother. 1968;9:621–6.Google Scholar
  45. 45.
    Silveira PC, Ferreira KB, da Rocha FR, Pieri BL, Pedroso GS, De Souza CT, et al. Effect of low-power laser (LPL) and light-emitting diode (LED) on inflammatory response in burn wound healing. Inflammation. 2016;39:1395–404.CrossRefGoogle Scholar
  46. 46.
    Fekrazad R, Nikkerdar A, Joharchi K, Kalhori KA, Mashhadi Abbas F, Salimi Vahid F. Evaluation of therapeutic laser influences on the healing of third-degree burns in rats according to different wavelengths. J Cosmet Laser Ther. 2017;19:232–6.CrossRefGoogle Scholar
  47. 47.
    Fantinati MS, Mendonca DE, Fantinati AM, Santos BF, Reis JC, Afonso CL, et al. Low intensity ultrasound therapy induces angiogenesis and persistent inflammation in the chronic phase of the healing process of third degree burn wounds experimentally induced in diabetic and non-diabetic rats. Acta Cir Bras. 2016;31:463–71.CrossRefGoogle Scholar
  48. 48.
    Mesquita RL, Silva PI, Melo e Silva SH, Oliveira KO, Fontes-Pereira AJ, Freitas JJ, et al. Effect of low-intensity therapeutic ultrasound on wound healing in rats subjected to third-degree burns. Acta Cir Bras. 2016;31:36–43.CrossRefGoogle Scholar
  49. 49.
    Martinez-Zapata MJ, Marti-Carvajal A, Sola I, Bolibar I, Angel Exposito J, Rodriguez L, et al. Efficacy and safety of the use of autologous plasma rich in platelets for tissue regeneration: a systematic review. Transfusion. 2009;49:44–56.CrossRefGoogle Scholar
  50. 50.
    Venter NG, Marques RG, Santos JS, Monte-Alto-Costa A. Use of platelet-rich plasma in deep second- and third-degree burns. Burns. 2016;42:807–14.CrossRefGoogle Scholar
  51. 51.
    Maciel FB, DeRossi R, Modolo TJ, Pagliosa RC, Leal CR, Delben AA. Scanning electron microscopy and microbiological evaluation of equine burn wound repair after platelet-rich plasma gel treatment. Burns. 2012;38:1058–65.CrossRefGoogle Scholar
  52. 52.
    Marck RE, Gardien KL, Stekelenburg CM, Vehmeijer M, Baas D, Tuinebreijer WE, et al. The application of platelet-rich plasma in the treatment of deep dermal burns: a randomized, double-blind, intra-patient controlled study. Wound Repair Regen. 2016;24:712–20.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Jianglin Tan
    • 1
  • Gaoxing Luo
    • 1
  1. 1.Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burns and Combined InjuryThird Military Medical UniversityChongqingP. R. China

Personalised recommendations