Advertisement

Secondary Infection in Sepsis: Clinical Significance, Immune Mechanism, and Therapy Strategies

  • Zhong-qiu Lu
Chapter

Abstract

Sepsis is a common and main cause of morbidity and mortality in intensive care units and emergency departments. Recent evidence illustrated that patients who are suffering from sepsis undergo a prolonged immunosuppressive phase. As a consequence, many septic patients are at risk for secondary infection which is considered to be the major reason for the high mortality of this disease nowadays. In this paper, we discuss the clinical significance of secondary infection and its potential immune mechanisms. In addition, the conventional measures and novel immunomodulatory strategies are also summarized.

Keywords

Sepsis Secondary infection Nosocomial infection Immune Immunosuppression 

References

  1. 1.
    Kaukonen KM, Bailey M, Suzuki S, Pilcher D, Bellomo R. Mortality related to severe sepsis and septic shock among critically ill patients in Australia and New Zealand, 2000–2012. JAMA. 2014;311(13):1308–16.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Stevenson EK, Rubenstein AR, Radin GT, et al. Two decades of mortality trends among patients with severe sepsis: a comparative meta-analysis. Crit Care Med. 2014;42(3):625–31.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Walkey AJ, Wiener RS, Lindenauer PK. Utilization patterns and outcomes associated with central venous catheter in septic shock: a population-based study. Crit Care Med. 2013;41(6):1450–7.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Goto T, Yoshida K, Tsugawa Y, Filbin MR, Camargo CA Jr, Hasegawa K. Mortality trends in U.S. adults with septic shock, 2005–2011: a serial cross-sectional analysis of nationally-representative data. BMC Infect Dis. 2016;16:294.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Zhao GJ, Li D, Zhao Q, Song JX, et al. Incidence, risk factors and impact on outcomes of secondary infection in patients with septic shock: an 8-year retrospective study. Sci Rep. 2016;6:38361.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Otto GP, Sossdorf M, Claus RA, Rödel J, et al. The late phase of sepsis is characterized by an increased microbiological burden and death rate. Crit Care. 2011;15(4):R183.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Walton AH, Muenzer JT, Rasche D, et al. Reactivation of multiple viruses in patients with sepsis. PLoS One. 2014;9(2):e98819.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Daviaud F, Grimaldi D, Dechartres A, et al. Timing and causes of death in septic shock. Ann Intensive Care. 2015;5(1):16.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Delano MJ, Ward PA. Sepsis-induced immune dysfunction: can immune therapies reduce mortality? J Clin Invest. 2016;126(1):23–31.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Hotchkiss RS, Monneret G, Payen D. Immunosuppression in sepsis: a novel understanding of the disorder and a new therapeutic approach. Lancet Infect Dis. 2013;13(3):260–8.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    León C, Ruiz-Santana S, Saavedra P, et al. A bedside scoring system (“Candida score”) for early antifungal treatment in nonneutropenic critically ill patients with Candida colonization. Crit Care Med. 2006;34(3):730–7.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Delano MJ, Thayer T, Gabrilovich S, et al. Sepsis induces early alterations in innate immunity that impact mortality to secondary infection. J Immunol. 2011;186(1):195–202.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    López-Collazo E, del Fresno C. Pathophysiology of endotoxin tolerance: mechanisms and clinical consequences. Crit Care. 2013;17(6):242.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Lekkou A, Karakantza M, Mouzaki A, et al. Cytokine production and monocyte HLA-DR expression as predictors of outcome for patients with community-acquired severe infections. Clin Diagn Lab Immunol. 2004;11(1):161–7.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Lukaszewicz AC, Grienay M, Resche-Rigon M, et al. Monocytic HLA-DR expression in intensive care patients: interest for prognosis and secondary infection prediction. Crit Care Med. 2009;37(10):2746–52.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Deng JC, Cheng G, Newstead MW, et al. Sepsis-induced suppression of lung innate immunity is mediated by IRAK-M. J Clin Invest. 2006;116(9):2532–42.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Fan X, Liu Z, Jin H, Yan J, Liang HP. Alterations of dendritic cells in sepsis: featured role in immunoparalysis. Biomed Res Int. 2015;2015:903720.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Luan YY, Dong N, Xie M, et al. The significance and regulatory mechanisms of innate immune cells in the development of sepsis. J Interf Cytokine Res. 2014;34(1):2–15.CrossRefGoogle Scholar
  19. 19.
    Pène F, Zuber B, Courtine E, Rousseau C, et al. Dendritic cells modulate lung response to Pseudomonas aeruginosa in a murine model of sepsis-induced immune dysfunction. J Immunol. 2008;181(12):8513–20.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Cabrera-Perez J, Condotta SA, Badovinac VP, et al. Impact of sepsis on CD4 T cell immunity. J Leukoc Biol. 2014;96(5):767–77.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Zhao GJ, Yao YM, Lu ZQ, et al. Up-regulation of mitofusin-2 protects CD4+ T cells from HMGB1-mediated immune dysfunction partly through Ca(2+)-NFAT signaling pathway. Cytokine. 2012;59(1):79–85.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Arens C, Bajwa SA, Koch C, et al. Sepsis-induced long-term immune paralysis—results of a descriptive, explorative study. Crit Care. 2016;20:93.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Chang KC, Burnham CA, Compton SM, et al. Blockade of the negative co-stimulatory molecules PD-1 and CTLA-4 improves survival in primary and secondary fungal sepsis. Crit Care. 2013;17(3):R85.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Corthay A. How do regulatory T cells work? Scand J Immunol. 2009;70(4):326–36.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Monneret G, Debard AL, Venet F, et al. Marked elevation of human circulating CD4+CD25+ regulatory T cells in sepsis-induced immunoparalysis. Crit Care Med. 2003;31(7):2068–71.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Cavassani KA, Carson WF 4th, Moreira AP, Wen H, Schaller MA, Ishii M, Lindell DM, Dou Y, Lukacs NW, Keshamouni VG, Hogaboam CM, Kunkel SL. The post sepsis-induced expansion and enhanced function of regulatory T cells create an environment to potentiate tumor growth. Blood. 2010;115(22):4403–11.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Huang LF, Yao YM, Dong N, Yu Y, He LX, Sheng ZY. Association between regulatory T cell activity and sepsis and outcome of severely burned patients: a prospective, observational study. Crit Care. 2010;14(1):R3.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Tatura R, Zeschnigk M, Hansen W, et al. Relevance of Foxp3+ regulatory T cells for early and late phases of murine sepsis. Immunology. 2015;146(1):144–56.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    LeBien TW, Tedder TF. B lymphocytes: how they develop and function. Blood. 2008;112(5):1570–80.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Lanzavecchia A. Antigen-specific interaction between T and B cells. Nature. 1985;314:537–9.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Browne EP. Regulation of B-cell responses by toll-like receptors. Immunology. 2012;136(4):370–9.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Rosser EC, Mauri C. Regulatory B cells: origin, phenotype, and function. Immunity. 2015;42(4):607–12.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Rauch PJ, Chudnovskiy A, Robbins CS, et al. Innate response activator B cells protect against microbial sepsis. Science. 2012;335(6068):597–601.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Kelly-Scumpia KM, Scumpia PO, Weinstein JS, et al. B cells enhance early innate immune responses during bacterial sepsis. J Exp Med. 2011;208(8):1673–82.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Monserrat J, de Pablo R, Diaz-Martín D, et al. Early alterations of B cells in patients with septic shock. Crit Care. 2013;17(3):R105.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Suzuki K, Inoue S, Kametani Y, et al. Reduced Immunocompetent B cells and increased secondary infection in elderly patients with severe Sepsis. Shock. 2016;46(3):270–8.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Mehta Y, Gupta A, Todi S, et al. Guidelines for prevention of hospital acquired infections. Indian J Crit Care Med. 2014;18(3):149–63.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Chaudhry H, Zhou J, Zhong Y, et al. Role of cytokines as a double-edged sword in sepsis. In Vivo. 2013;27(6):669–84.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Netea MG, van Tits LJ, Curfs JH, et al. Increased susceptibility of TNF-alpha lymphotoxin-alpha double knockout mice to systemic candidiasis through impaired recruitment of neutrophils and phagocytosis of Candida albicans. J Immunol. 1999;163(3):1498–505.PubMedGoogle Scholar
  40. 40.
    Song Z, Zhang J, Zhang X, et al. Interleukin 4 deficiency reverses development of secondary Pseudomonas aeruginosa pneumonia during sepsis-associated immunosuppression. J Infect Dis. 2015;211(10):1616–27.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Steinhauser ML, Hogaboam CM, Kunkel SL, et al. IL-10 is a major mediator of sepsis-induced impairment in lung antibacterial host defense. J Immunol. 1999;162(1):392–9.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Cao J, Xu F, Lin S, et al. IL-27 controls sepsis-induced impairment of lung antibacterial host defence. Thorax. 2014;69(10):926–37.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Namen AE, Lupton S, Hjerrild K, et al. Stimulation of B-cell progenitors by cloned murine interleukin-7. Nature. 1988;333(6173):571–3.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Hand TW, Morre M, Kaech SM. Expression of IL-7 receptor alpha is necessary but not sufficient for the formation of memory CD8 T cells during viral infection. Proc Natl Acad Sci U S A. 2007;104(28):11730–5.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Corfe SA, Paige CJ. The many roles of IL-7 in B cell development; mediator of survival, proliferation and differentiation. Semin Immunol. 2012;24(3):198–208.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Sheikh V, Porter BO, DerSimonian R, Kovacs SB, et al. Administration of interleukin-7 increases CD4 T cells in idiopathic CD4 lymphocytopenia. Blood. 2016;127(8):977–88.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Audigé A, Hofer U, Dittmer U, et al. Evaluation of the immunomodulatory and antiviral effects of the cytokine combination IFN-α and IL-7 in the lymphocytic choriomeningitis virus and friend retrovirus mouse infection models. Viral Immunol. 2011;24(5):375–85.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Unsinger J, McGlynn M, Kasten KR, et al. IL-7 promotes T cell viability, trafficking, and functionality and improves survival in sepsis. J Immunol. 2010;184(7):3768–79.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Shindo Y, Fuchs AG, Davis CG, et al. Interleukin 7 immunotherapy improves host immunity and survival in a two-hit model of Pseudomonas aeruginosa pneumonia. J Leukoc Biol. 2017;101(2):543–54.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Inoue S, Unsinger J, Davis CG, et al. IL-15 prevents apoptosis, reverses innate and adaptive immune dysfunction, and improves survival in sepsis. J Immunol. 2010;184(3):1401–9.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Waldmann TA, Lugli E, Roederer M, et al. Safety (toxicity), pharmacokinetics, immunogenicity, and impact on elements of the normal immune system of recombinant human IL-15 in rhesus macaques. Blood. 2011;117(18):4787–95.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Wege AK, Weber F, Kroemer A, et al. IL-15 enhances the anti-tumor activity of trastuzumab against breast cancer cells but causes fatal side effects in humanized tumor mice (HTM). Oncotarget. 2017;8(2):2731–44.Google Scholar
  53. 53.
    Guo Y, Luan L, Rabacal W, et al. IL-15 superagonist-mediated immunotoxicity: role of NK cells and IFN-γ. J Immunol. 2015;195(5):2353–64.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Buchbinder EI, Desai A. CTLA-4 and PD-1 pathways: similarities, differences, and implications of their inhibition. Am J Clin Oncol. 2016;39(1):98–106.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Callahan MK, Postow MA, Wolchok JD. CTLA-4 and PD-1 pathway blockade: combinations in the clinic. Front Oncol. 2015;4:385.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Parry RV, Chemnitz JM, Frauwirth KA, et al. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol. 2005;25(21):9543–53.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Shao R, Fang Y, Yu H, et al. Monocyte programmed death ligand-1 expression after 3-4 days of sepsis is associated with risk stratification and mortality in septic patients: a prospective cohort study. Crit Care. 2016;20(1):124.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Zhang Y, Li J, Lou J, et al. Upregulation of programmed death-1 on T cells and programmed death ligand-1 on monocytes in septic shock patients. Crit Care. 2011;15(1):R70.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Chang K, Svabek C, Vazquez-Guillamet C, et al. Targeting the programmed cell death 1: programmed cell death ligand 1 pathway reverses T cell exhaustion in patients with sepsis. Crit Care. 2014;18(1):R3.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Zhang Y, Zhou Y, Lou J, et al. PD-L1 blockade improves survival in experimental sepsis by inhibiting lymphocyte apoptosis and reversing monocyte dysfunction. Crit Care. 2010;14(6):R220.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Grigg C, Rizvi NA. PD-L1 biomarker testing for non-small cell lung cancer: truth or fiction? J Immunother Cancer. 2016;4:48.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Murphy KM, Nelson CA, Sedý JR. Balancing co-stimulation and inhibition with BTLA and HVEM. Nat Rev Immunol. 2006;6(9):671–81.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Shubin NJ, Monaghan SF, Heffernan DS, et al. B and T lymphocyte attenuator expression on CD4+ T-cells associates with sepsis and subsequent infections in ICU patients. Crit Care. 2013;17(6):R276.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Shao R, Li CS, Fang Y, et al. Low B and T lymphocyte attenuator expression on CD4+ T cells in the early stage of sepsis is associated with the severity and mortality of septic patients: a prospective cohort study. Crit Care. 2015;19:308.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Ren F, Li J, Jiang X, et al. Plasma soluble Tim-3 emerges as an inhibitor in sepsis: sepsis contrary to membrane Tim-3 on monocytes. Tissue Antigens. 2015;86(5):325–32.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Nowak EC, Lines JL, Varn FS, et al. Immunoregulatory functions of VISTA. Immunol Rev. 2017;276(1):66–79.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Anderson AC, Joller N, Kuchroo VK. Lag-3, Tim-3, and TIGIT: co-inhibitory receptors with specialized functions in immune regulation. Immunity. 2016;44(5):989–1004.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Hotchkiss RS, McConnell KW, Bullok K, et al. TAT-BH4 and TAT-Bcl-xL peptides protect against sepsis-induced lymphocyte apoptosis in vivo. J Immunol. 2006;176(9):5471–7.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Liu YC, Yao FH, Chai YF, et al. Xuebijing injection promotes M2 polarization of macrophages and improves survival rate in septic mice. Evid Based Complement Alternat Med. 2015;2015:352642.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Liu QY, Yao YM, Yu Y, et al. Astragalus polysaccharides attenuate postburn sepsis via inhibiting negative immunoregulation of CD4+CD25(high) T cells. PLoS One. 2011;6(6):e19811.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Chen W, Lian J, Ye JJ, et al. Ethyl pyruvate reverses development of Pseudomonas aeruginosa pneumonia during sepsis-induced immunosuppression. Int Immunopharmacol. 2017;52:61–9.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Car BD, Eng VM, Schnyder B, et al. Interferon gamma receptor deficient mice are resistant to endotoxic shock. J Exp Med. 1994;179(5):1437–44.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Romero CR, Herzig DS, Etogo A, et al. The role of interferon-γ in the pathogenesis of acute intra-abdominal sepsis. J Leukoc Biol. 2010;88(4):725–35.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Jouanguy E, Altare F, Lamhamedi S, et al. Interferon-gamma-receptor deficiency in an infant with fatal bacille Calmette-Guérin infection. N Engl J Med. 1996;335(26):1956–61.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Döcke WD, Randow F, Syrbe U, et al. Monocyte deactivation in septic patients: restoration by IFN-gamma treatment. Nat Med. 1997;3(6):678–81.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Nakos G, Malamou-Mitsi VD, Lachana A, et al. Immunoparalysis in patients with severe trauma and the effect of inhaled interferon-gamma. Crit Care Med. 2002;30(7):1488–94.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Barreda DR, Hanington PC, Belosevic M. Regulation of myeloid development and function by colony stimulating factors. Dev Comp Immunol. 2004;28(5):509–54.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Meisel C, Schefold JC, Pschowski R, et al. Granulocyte-macrophage colony-stimulating factor to reverse sepsis-associated immunosuppression: a double-blind, randomized, placebo-controlled multicenter trial. Am J Respir Crit Care Med. 2009;180(7):640–8.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Orozco H, Arch J, Medina-Franco H, et al. Molgramostim (GM-CSF) associated with antibiotic treatment in nontraumatic abdominal sepsis: a randomized, double-blind, placebo-controlled clinical trial. Arch Surg. 2006;141(2):150–3.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Hall MW, Knatz NL, Vetterly C, et al. Immunoparalysis and nosocomial infection in children with multiple organ dysfunction syndrome. Intensive Care Med. 2011;37(3):525–32.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Bo L, Wang F, Zhu J, et al. Granulocyte-colony stimulating factor (G-CSF) and granulocyte-macrophage colony stimulating factor (GM-CSF) for sepsis: a meta-analysis. Crit Care. 2011;15(1):R58.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Romani L, Bistoni F, Montagnoli C, et al. Thymosin alpha1: an endogenous regulator of inflammation, immunity, and tolerance. Ann N Y Acad Sci. 2007;1112:326–38.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Romani L, Bistoni F, Perruccio K, et al. Thymosin alpha1 activates dendritic cell tryptophan catabolism and establishes a regulatory environment for balance of inflammation and tolerance. Blood. 2006;108(7):2265–74.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    You J, Zhuang L, Cheng HY, et al. Efficacy of thymosin alpha-1 and interferon alpha in treatment of chronic viral hepatitis B: a randomized controlled study. World J Gastroenterol. 2006;12(41):6715–21.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Wang X, Li W, Niu C, et al. Thymosin alpha 1 is associated with improved cellular immunity and reduced infection rate in severe acute pancreatitis patients in a double-blind randomized control study. Inflammation. 2011;34(3):198–202.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Garaci E, Pica F, Rasi G, et al. Thymosin alpha 1 in the treatment of cancer: from basic research to clinical application. Int J Immunopharmacol. 2000;22(12):1067–76.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Wan J, Shan Y, Shan H, et al. Thymosin-alpha1 promotes the apoptosis of regulatory T cells and survival rate in septic mice. Front Biosci (Landmark Ed). 2011;16:3004–13.CrossRefGoogle Scholar
  88. 88.
    Wu J, Zhou L, Liu J, et al. The efficacy of thymosin alpha 1 for severe sepsis (ETASS): a multicenter, single-blind, randomized and controlled trial. Crit Care. 2013;17(1):R8.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Zhong-qiu Lu
    • 1
  1. 1.Emergency DepartmentThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouP. R. China

Personalised recommendations