A Flexible and Reliable Wireless Sensor Network Architecture for Precision Agriculture in a Tomato Greenhouse

  • Vimla Devi RamdooEmail author
  • Kavi Kumar Khedo
  • Vishwakalyan Bhoyroo
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 863)


Agriculture in the twenty-first century faces significant challenges given the ever-increasing need to produce more food to feed a growing population. Wireless Sensor Networks (WSNs) have recently emerged in agriculture to improve crop yields as well as to facilitate decision-making. Numerous environmental sensors that can sense data such as humidity, pressure, temperature, and light are deployed in the WSN that can be used both on land and underground. This paper proposes the design of a reliable and flexible WSN using heterogeneous environmental sensor data streams for precision agriculture in a tomato greenhouse. The proposed system is used to monitor the ever-changing greenhouse environmental conditions that will allow the farmer to have access to real-time as well as historical data of the greenhouse. Furthermore, the proposed system is evaluated using a qualitative approach. Finally, challenges and future works related to WSNs design for precision agriculture are explored.


Wireless sensor network Precision agriculture Greenhouse 


  1. 1.
    Alexandratos, N., Bruinsma, J.: World agriculture towards 2030/2050. Land Use Policy 20(4), 375 (2012)Google Scholar
  2. 2.
  3. 3.
    EU FP7 CityPulse Project- Open Source Tools and Components.
  4. 4.
    Flores, K.O., Butaslac, I.M., Gonzales, J.E.M., Dumlao, S.M.G., Reyes, R.S.: Precision agriculture monitoring system using wireless sensor network and Raspberry Pi local server. In: 10th IEEE International Conference, Proceedings/TENCON, pp. 3018–3021. IEEE (2017)Google Scholar
  5. 5.
  6. 6.
    Hamouda, Y.E.M., Elhabil, B.H.Y.: Precision agriculture for greenhouses using a wireless sensor network. In: Palestinian International Conference on Information and Communication Technology, pp. 78–83. IEEE (2017)Google Scholar
  7. 7.
    IoT Open Patforms.
  8. 8.
    Satapathy, S.C., Bhateja, V., Raju, K.S., Janakiramaiah, B. (eds.): Data engineering and intelligent computing. In: Proceedings of IC3T 2016, vol. 542. Springer, Heidelberg (2017)Google Scholar
  9. 9.
  10. 10.
    Kassim, M., Mat, I., Harun, A.: Wireless sensor network in precision agriculture application. In: Computer, Information and Telecommunication Systems, International Conference, pp. 1–5. IEEE (2014)Google Scholar
  11. 11.
    Khedo, K.K., Hosseny, M.R., Toonah, M.Z.: PotatoSense: a wireless sensor network system for precision agriculture. In: IST-Africa Conference Proceedings, pp. 1–11. IEEE (2014)Google Scholar
  12. 12.
    Mat, I., Kassim, M.R.M., Harun, A.N.: Precision agriculture applications using wireless moisture sensor network. In: Communications (MICC), IEEE 12th Malaysia International Conference, pp. 18–23. IEEE (2015)Google Scholar
  13. 13.
    Math, R.K., Dharwadkar, N.V.: A wireless sensor network based low cost and energy efficient frame work for precision agriculture. In: Nascent Technologies in Engineering, International Conference, pp. 1–6. IEEE (2017)Google Scholar
  14. 14.
    Mississipi State University: Greenhouse Tomato Handbook. Human Mutation, 35(7) (2014)Google Scholar
  15. 15.
    MIT Technology Review Insights: IoT: The Internet of Tomatoes.
  16. 16.
    Ojha, T., Misra, S., Raghuwanshi, N.S.: Wireless sensor networks for agriculture: the state-of-the-art in practice and future challenges. Comput. Electron. Agric. 118, 66–84. (Elsevier) (2015)Google Scholar
  17. 17.
  18. 18.
    Rawat, P., Singh, K.D., Chaouchi, H., Bonnin, J.M.: Wireless sensor networks: a survey on recent developments and potential synergies. J Supercomputing 68(1), 1–48 (2014)CrossRefGoogle Scholar
  19. 19.
    Satapathy, S.C., Bhateja, V., Raju, K.S., Janakiramaiah, B.: Computer communication, networking and internet security. In: Proceedings of IC3T, vol. 5 (2016)Google Scholar
  20. 20.
    Satapathy, S.C., Bhateja, V., Das, S.: Smart computing and informatics. In: Proceedings of the First International Conference on SCI, vol. 1 (2016)Google Scholar
  21. 21.
    Singh, D.P., Bhateja, V., Soni, S.K.: Energy optimization in WSNs employing rolling grey model. In: Signal Processing and Integrated Networks (SPIN), International Conference, pp. 801–808. IEEE (2014)Google Scholar
  22. 22.
    Snyder, R.G.: Greenhouse Tomatoes Higher Quality & Value, pp. 1–18 (2017)Google Scholar
  23. 23.
    Statistics Mauritius: Digest of Agricultural Statistics (2014)Google Scholar
  24. 24.
    Suazo-López, F., Zepeda-Bautista, R., Sánchez-Del Castillo, F., Martínez-Hernández, J.J., Virgen-Vargas, J., Tijerina-Chávez, L.: Growth and yield of tomato (Solanum lycopersicum L.) as affected by hydroponics, greenhouse and irrigation regimes. Ann. Res. Rev. Biol. 4(24), 4246 (2014)Google Scholar
  25. 25.
  26. 26.
    Tubaishat, M., Madria, S.: Sensor networks: an overview. IEEE Potentials 22(2), 20–23 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Vimla Devi Ramdoo
    • 1
    Email author
  • Kavi Kumar Khedo
    • 2
  • Vishwakalyan Bhoyroo
    • 2
  1. 1.Curtin MauritiusMokaMauritius
  2. 2.University of MauritiusRéduitMauritius

Personalised recommendations