Advertisement

Modeling and Experimental Study of Surfaces Optoelectronic Elements from Crystal Materials in Polishing

  • Yu. D. FilatovEmail author
Chapter
Part of the Springer Tracts in Mechanical Engineering book series (STME)

Abstract

Based on investigations of the mechanism of precision surface formation in workpieces of anisotropic monocrystalline materials for optoelectronics, a generalized model of material removal in polishing with suspensions of polishing powders has been constructed. The removal rate in polishing sapphire planes of different crystallographic orientations has been found to grow in the series m < c < a < r with increasing volume, surface area, and most probable size of debris particles as well as with energy of dispersion of material from the face being polished. A study of the mechanism of formation of monocrystal planes of different crystallographic orientations has revealed that in polishing of sapphire the surface roughness parameters Ra, Rq, Rmax decrease in the series c > r > m > a with decreasing dielectric permittivity and thermal conductivity coefficient of the workpiece material, debris particle height, and Lifshitz constant. As a result, studies of regularities mechanical polishing optoelectronic components of crystalline materials found that polishing efficiency decreases with an increase of the binding energy and the transfer energy. It is shown that the polishing efficiency increases with increasing heat conduction coefficient of the material being processed, a processed surface road friction element by lapping and Lifshitz force. It is found that the ratio of the volume wear coefficient to the temperature conductivity coefficient of the material being processed depends on the specific heat and the transfer energy. The relative roughness of the treated surfaces of silicon carbide crystals, gallium nitride, aluminum nitride, and sapphire is characterized by the ratio: 0.68:0.67:0.63:1.00.

References

  1. 1.
    Filatov YuD, Vetrov AG, Sidorko VI, Filatov OYu, Kovalev SV (2013) A mechanism of diamond-abrasive finishing of monocrystalline silicon carbide. J Superhard Mater 35(5):303–308CrossRefGoogle Scholar
  2. 2.
    Prikhna TA, Starostina AV, Lizkendorf D et al (2014) Studies of the oxidation stability, mechanical characteristics of materials based on max phases of the Ti–Al–(C, N) systems, and of the possibility of their use as tool bonds and materials for polishing. J Superhard Mater 36(1):9–17CrossRefGoogle Scholar
  3. 3.
    Filatov YuD, Vetrov AG, Sidorko VI, Filatov OYu et al (2015) Polishing of optoelectronic components made of monocrystalline silicon carbide. J Superhard Mater 37(1):48–56CrossRefGoogle Scholar
  4. 4.
    Filatov OYu, Sidorko VI, Filatov YuD (2007) Special features of macro- and microrelief formation in nonmetallic flat surfaces in diamond grinding. J Superhard Mater 29(6):361–368CrossRefGoogle Scholar
  5. 5.
    Filatov YuD, Sidorko VI, Filatov OYu et al (2009) Surface roughness in diamond abrasive finishing. J Superhard Mater 31(3):191–195CrossRefGoogle Scholar
  6. 6.
    Filatov YD, Sidorko VI, Filatov OYu, Yaschuk VP, Heisel U, Storchak M (2009) Surface quality control in diamond abrasive finishing. Measurement Systems for Industrial Inspection VI, Proceedings of SPIE, 2009, vol 7389, art. 73892O (9)Google Scholar
  7. 7.
    Filatov OYu, Poperenko LV (2006) In situ ellipsometry of surface layer of nonmetallic transparent materials during its finish processing. Appl Surf Sci 253(1):163–166CrossRefGoogle Scholar
  8. 8.
    Filatov YuD, Yashchuk VPFilatov OYu, Heisel U, Storchak M, Monteil G (2009) Assessment of surface roughness and reflectance of nonmetallic products upon diamond abrasive finishing. J Superhard Mater 31(5), art. 338Google Scholar
  9. 9.
    Filatov YuD, Filatov OYu, Heisel U, Storchak M, Monteil G (2010) In situ control of roughness of processed surfaces by reflectometric method. Optical Micro- and Nanometrology III, Proceedings of SPIE, vol 7718, art. 77181 J (9)Google Scholar
  10. 10.
    Filatov YuD, Filatov AYu, Syrota OO et al (2010) The influence of tool wear particles scattering in the contact zone on the workpiece surface microprofile formation in polishing quartz. J Superhard Mater 32(6):415–422CrossRefGoogle Scholar
  11. 11.
    Filatov YuD, Sidorko VI (2011) Localization of fragments of a deposit on the workpiece surface in polishing nonmetallic materials. J Superhard Mater 33(5), art. 340CrossRefGoogle Scholar
  12. 12.
    Filatov YuD, Monteil G, Sidorko VI, Filatov OYu (2013) Formation of a deposit on workpiece surface in polishing nonmetallic materials. Smart Sensors, Actuators, and MEMS VI. Proceedings of SPIE, vol 8763, art. 876336 (15)Google Scholar
  13. 13.
    Zhu H, Tessaroto LA, Sabia R, Greenhut VA, Smith M, Niesz DE (2004) Chemical mechanical polishing (CMP) anisotropy in sapphire. Appl Surf Sci 236(1–4):120–130CrossRefGoogle Scholar
  14. 14.
    Budnikov AT, Vovk EA, Krivonogov SI, Danko AYa, Lukiyenko OA (2010) Anisotropy of sapphire properties associated with chemical-mechanical polishing with silica. Funct Mater 17(4):488–494Google Scholar
  15. 15.
    Wang Y, Liuu S, Peng G, Zhou S, Xu J (2005) Effects of surface treatment on sapphire substrates. J Crystal Growth 274:241–245CrossRefGoogle Scholar
  16. 16.
    Li Y, Wu Y, Wang J, Yang W, Guo Y, Xu Q (2012) Tentative investigation towards precision polishing of optical components with ultrasonically vibrating bound-abrasive pellets. Opt Express 20(1):568–575CrossRefGoogle Scholar
  17. 17.
    Zhou C, Zhang Q, He C, Li Y (2014) Function of liquid and tool wear in ultrasonic bound-abrasive polishing of fused silica with different polishing tools. Opt-Int J Light Electron Opt 125(15):4064–4068CrossRefGoogle Scholar
  18. 18.
    Filatov YuD (2008) Bound-abrasive polishing of precision surfaces of nonmetallic materials. J Superhard Mater 30(1), art. 44Google Scholar
  19. 19.
    Filatov YuD, Filatov OYu, Monteil G, Heisel U, Storchak MG (2011) Bound-abrasive grinding and polishing of surfaces of optical materials. Opt Eng 50(6), art. 063401CrossRefGoogle Scholar
  20. 20.
    Filatov YuD, Filatov OYu, Monteil G, Heisel U, Storchak M (2010) Bound-abrasive grinding and polishing of surfaces of optical materials. Current developments in lens design and optical engineering XI; and advances in thin film coatings VI, Proceedings of SPIE, 2010, vol 7786, art. 778613 (9)Google Scholar
  21. 21.
    Chen XF, Siche D, Albrecht M, Hartmann C, Wollweber J, Xu XG (2008) Surface preparation of AlN substrates. Crystal Res Technol 43(6):651–655CrossRefGoogle Scholar
  22. 22.
    Vovk EA, Budnikov AT, Nizhankovskyi SV et al (2013) Polishing of AlN/sapphire substrate obtained by thermochemical nitridation of sapphire. Funct Mater 20(2):253–258CrossRefGoogle Scholar
  23. 23.
    Satoh I, Arakawa S, Tanizaki K, Miyanaga M, Sakurada T, Yamamoto Y, Nakahata H (2010) Development of aluminum nitride single-crystal substrates. SEI Techn Rev 71:78–82Google Scholar
  24. 24.
    Ling Y, Low-damage grinding. In: Polishing of silicon carbide surfaces: SIMTech Technical Report (PT/01/001/PM)Google Scholar
  25. 25.
    Aida H, Takeda H, Kim S-W, Aota N, Koyama K, Yamazaki T, Doi T (2014) Evaluation of subsurface damage in GaN substrate induced by mechanical polishing with diamond abrasives. Appl Surf Sci 292:531–536CrossRefGoogle Scholar
  26. 26.
    Nowak G, Xia XH, Kelly JJ, Weyher JL, Porowski S (2001) Electrochemical etching of highly conductive GaN single crystals. J Cryst Growth 222:735–740CrossRefGoogle Scholar
  27. 27.
    Golabczak M (2011) Polishing of hard machining semiconductor materials made of silicon carbide. Mech Mech Eng 15(1):81–93Google Scholar
  28. 28.
    Deng Hui, Hosoya Kenji, Imanishi Yusuke, Endo Katsuyoshi, Yamamura Kazuya (2015) Electro-chemical mechanical polishing of single-crystal SiC using CeO2 slurry. Electrochem Commun 52:5–8CrossRefGoogle Scholar
  29. 29.
    Filatov OYu, Sidorko VI, Kovalev SV et al (2016) Polishing substrates of single-crystal silicon carbide and sapphire for optoelectronics. Funct Mater 23(1):104–110CrossRefGoogle Scholar
  30. 30.
    Filatov YuD (2017) Diamond polishing of crystalline materials for optoelectronics. J Superhard Mater 39(6):427–433CrossRefGoogle Scholar
  31. 31.
    Li Yaguo, Yongbo Wu, Zhou Libo, Fujimoto Masakazu (2014) Vibration-assisted dry polishing of fused silica using a fixed-abrasive polisher. Int J Machine Tools Manufact 77:93–102CrossRefGoogle Scholar
  32. 32.
    Budnikov AT, Vovk EA, Kanishchev VN, Krivonogov SI (2012) Investigation of residual stresses in sapphire plates after grinding and polishing. Funct Mater 19(4):478–482Google Scholar
  33. 33.
    Yan W, Zhang Z, Guo X, Liu W, Song Z (2015) The effect of pH on sapphire chemical mechanical polishing. ECS J Solid State Sci Technol 4(3):108–111CrossRefGoogle Scholar
  34. 34.
    Vovk EA (2015) Chemical-mechanical polishing of sapphire by polishing suspension based on aerosol. Funct Mater 22(2):252–257CrossRefGoogle Scholar
  35. 35.
    Vovk EA (2015) Deagglomeration of aerosil in polishing suspension for chemical-mechanical polishing of sapphire. Funct Mater 22(1):110–115MathSciNetCrossRefGoogle Scholar
  36. 36.
    Filatov YuD (2001) Polishing of aluminosilicate materials with bound-abrasive tools. Sverkhtverdye Materialy 23(3):36–49 (J Superhard Mater 2001, no. 3)Google Scholar
  37. 37.
    Filatov YuD, Sidorko VI (2005) Statistical approach to wear of nonmetallic workpiece surfaces in polishing. Sverkhtverdye Materialy 27(1):58–66 (J Superhard Mater 2005, no. 1)Google Scholar
  38. 38.
    Filatov OYu, Sidorko VI, Kovalev SV, Filatov YuD, Vetrov AG (2016) Material removal rate in polishing anisotropic monocrystalline materials for optoelectronics. J Superhard Mater 38(2):123–131CrossRefGoogle Scholar
  39. 39.
    Bakholdin SI, Maslov VN (2015) Modeling of surface energies of sapphire crystals. Fiz Tverd Tela 57(6):1213–1219Google Scholar
  40. 40.
    Vodenitcharova T, Zhang LC, Zarudi I, Yin Y, Domyo H, Ho T, Sato M (2007) The effect of anisotropy on the deformation and fracture of sapphire wafers subjected to thermal shocks. J Mater Proc Tech 194:52–62CrossRefGoogle Scholar
  41. 41.
    Dobrovinskaya ER, Litvinov LA, Pishchik VV (2004) Entsiklopediya sapfira (Encyclopedia of Sapphire). Institute for Monocrystals, National Academy of Sciences of Ukraine, KharkovGoogle Scholar
  42. 42.
    Barybin AA, Tomilin VI, Shapovalov VI (2011) Fiziko-tehnologicheskie osnovy makro-, mikro, i nanoelektroniki (Physical-Technological Fundamentals of Macro-, Micro-, and Nanoelectronics). Fizmatlit, MoscowGoogle Scholar
  43. 43.
    Kadleikova M, Breza J, Vesely M (2001) Raman spectra of synthetic sapphire. Microelectron J 32:955–958CrossRefGoogle Scholar
  44. 44.
    Fainer NI, Kosinova ML, Rumyantsev YuM (2001) Thin films of silicon and boron carbonitrides. Synthesis, investigation of composition and structure, Ros. Khim. Zhurn. Obshch. im. D. I. Mendeleeva vol XLV, no 3, pp 101–108Google Scholar
  45. 45.
    Gerasimov SA, Dmitrieva NM, Kosareva TA (2013) A study of machining of leucosapphire. Nauch-Tekhn Zhurn Kontenant 12(2):84–89Google Scholar
  46. 46.
    Filatov YuD (1991) The mechanism of the surface microrelief formation in glass polishing. Sverkhtverdye Materialy 5:61–65 (J Superhard Mater 1991, no. 5)Google Scholar
  47. 47.
    Cuccureddu F, Murphy S, Shvets IV, Porcu M, Zandberger HW, Sidorov NS, Bozhko SI (2010) Surface morphology of c-plane sapphire (α-alumina) produced by high temperature anneal. Surf Sci 604:1294–1299CrossRefGoogle Scholar
  48. 48.
    Butashin AV, Vlasov VP, Kanevskii VM, Muslimov AE, Fedorov VA (2012) Specific features of the formation of terrace-step nanostructures on the (0001) surface of sapphire crystals. Crystallogr Rep 57(6):824–830CrossRefGoogle Scholar
  49. 49.
    Filatov OYu, Sidorko VI, Kovalev SV, Filatov YuD, Vetrov AG (2016) Polished surface roughness of optoelectronic components made of monocrystalline materials. J Superhard Mater 38(3):197–206CrossRefGoogle Scholar
  50. 50.
    Kats EI (2015) Van der Waals, Casimir, and Lifshitz forces in soft substances. Usp Fiz Nauk 185(9):964–969CrossRefGoogle Scholar
  51. 51.
    Rekhviashvili SSh (2007) The application of fractional integro-differentiation for calculating thermodynamical properties of surfaces. Fiz Tverd Tela 49(4):756–759Google Scholar
  52. 52.
    Voloshin AE, Rashkovich LN, Rudneva EB, Manomenova VL (2014) Growing the crystals. Priroda 10:62–72Google Scholar
  53. 53.
    Rogov VV, Filatov YD, Kottler W, Sobol VP (2001) New technology of precision polishing of glass optic. Opt Eng 40(8):1641–1645CrossRefGoogle Scholar
  54. 54.
    Filatov YuD, Rogov VV (1994) A cluster model of fatigue wear mechanism of SiO2-containing materials in polishing with tools containing bound ceria-based polishing powders. Part 1. Sverkhtverdye Materialy 3:40–43 (J Superhard Mater 1994, no. 3)Google Scholar
  55. 55.
    Deryagin BV, Abrikosova II, Lifshitz EM (2015) Molecular attraction of condensed bodies. Usp Fiz Nauk 185(9):981–1001CrossRefGoogle Scholar
  56. 56.
    Lee HS, Jeong HD, Dornfeld DA (2013) Semi-empirical material removal rate distribution model for SiO2 chemical mechanical polishing (CMP) processes. Precis Eng 37:483–490CrossRefGoogle Scholar
  57. 57.
    Harima H (2002) Properties of GaN and related compounds studied by means of Raman scattering. J Phys: Condens Matter 14:967–993Google Scholar
  58. 58.
    Davydov VYu, Kitaev YuE, Goncharuk IN et al (1998) Phonon dispersion and Raman scattering in hexagonal GaN and AlN. Phys Rev B 58(19):12899–12907CrossRefGoogle Scholar
  59. 59.
    Quay R (2008) Gallium nitride electronics. Springer, BerlinGoogle Scholar
  60. 60.
    Asghar K, Qasim M, Das D (2014) Effect of polishing parameters on chemical mechanical planarization of C-plane (0001) gallium nitride surface using SiO2 and Al2O3 abrasives. ECS J Solid State Sci Technol 3(8):277–284CrossRefGoogle Scholar
  61. 61.
    Filatov YuD (2018) Surface roughness of optoelectronic components in mechanical polishing. J Superhard Mater 40(1):52–57CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.V. Bakul Institute for Superhard Materials, National Academy of Science of UkraineKievUkraine

Personalised recommendations