Advertisement

Principles of Chemical Metallurgy of Titanium Microalloyed Steel

  • Guangqiang LiEmail author
Chapter

Abstract

The main roles of the titanium in the titanium microalloyed steel are the grain refinement strengthening and the precipitation strengthening. The smelting of titanium microalloyed steel should satisfy that the most of the titanium dissolves in the molten steel, and precipitates in the form of carbide or carbon nitride after the subsequent solidification, rolling and heat treatment processes. Due to the fact that the affinity between titanium and oxygen is less than that of aluminum and oxygen, but stronger than that of silicon or manganese and oxygen, the addition of titanium can lead to the formation of large amounts of Ti-containing oxides in case of the molten steel is not properly deoxidized during the smelting process.

Keywords

Titanium Aluminium Deoxidation Thermodynamics Nonmetallic inclusions 

References

  1. 1.
  2. 2.
    China Iron & Steel Association. Ferrotitanium, GB/T 3282-2012 [S]. Beijing: Standards Press of China, 2013. (in Chinese).Google Scholar
  3. 3.
    Joanne L Murray. The Fe–Ti (Iron-Titanium) system [J]. Bulletin of Alloy Phase Diagrams, 1981, 2(3): 320–334.CrossRefGoogle Scholar
  4. 4.
    Manish Marotrao Pande, Muxing Guo, Bart Blanpain. Inclusion formation and interfacial reactions between FeTi alloys and liquid steel at an early stage [J]. ISIJ International, 2013, 53(4): 629–638.CrossRefGoogle Scholar
  5. 5.
    Pande M M, Guo M, Devisscher S,et al. Influence of ferroalloy impurities and ferroalloy addition sequence on ultra low carbon (ULC) steel cleanliness after RH treatment [J]. Ironmaking & Steelmaking, 2012, 39(7): 519–529.Google Scholar
  6. 6.
    The 19th Committee on Steelmaking, The Japan Society for the Promotion of Science. Steelmaking Data Sourcebook [M]. New York: Gordon and Breach Science Publishers, 1988.Google Scholar
  7. 7.
    Mitsutaka Hino, Kimihisha Ito Edited. Thermodynamic data for steelmaking [M]. Sendai, Japan: Tohoku University Press, 2010.Google Scholar
  8. 8.
    Morioka Y, Morita K, Tsukihashi F, et al. Equilibria between molten steels and inclusions during deoxidation by titanium-manganese alloy [J]. Tetsu-to-Hagané, 1995, 81(1): 40–45. (in Japanese).Google Scholar
  9. 9.
    Ohta M, Morita K. Interaction between silicon and titanium in molten steel [J]. ISIJ Int., 2003, 43(2): 256–258.CrossRefGoogle Scholar
  10. 10.
    Ghosh A, Murthy G V R. An Assessment of thermodynamic parameters for deoxidation of molten iron by Cr, V, Al, Zr and Ti [J]. Trans ISIJ, 1986, 26(7): 629–637.CrossRefGoogle Scholar
  11. 11.
    Cha W, Nagasaka T, Miki T, et al. Equilibrium between titanium and oxygen in liquid Fe–Ti alloy coexisted with titanium oxides at 1873 K [J]. ISIJ Int., 2006, 46(7): 996–1005.CrossRefGoogle Scholar
  12. 12.
    Sigworth G K, Elliott J. The thermodynamics of liquid dilute iron alloys [J]. Metal Sci., 1974, 8 (1): 298–310.CrossRefGoogle Scholar
  13. 13.
    Woo-Yeol Cha, Takahiro Miki, Yasushi Sasaki et al. Temperature dependence of Ti deoxidation equilibria of liquid iron in coexistence with ‘Ti3O5’ and Ti2O3 [J]. ISIJ Int., 2008, 48(6): 729–738.Google Scholar
  14. 14.
    Ohta M, Morita K. Interaction between silicon and titanium in molten steel [J]. ISIJ Int., 2003, 43(2): 256–258.CrossRefGoogle Scholar
  15. 15.
    Pak J, Yoo J, Jeong Y, et al. Thermodynamics of titanium and nitrogen in Fe-Si melt [J]. ISIJ Int. 2005, 45(1): 23–29.CrossRefGoogle Scholar
  16. 16.
    Morita K, Ohta M, Yamada A, et al. Interaction between Ti and Si, and Ti and Al in molten steel at 1873 K [C]. Conference Proceedings of the 3rd International Congress on the Science and Technology of Steelmaking, 2005:15–22.Google Scholar
  17. 17.
    Kimura H. Advances in high-purity steel (IF steel) Manufacturing technology [J]. Shinnittetsu Giho, 1994, (351): 59–63. (in Japanese).Google Scholar
  18. 18.
    Kawashima Y, Nagata Y, Shinme K, et al. Influence of Ti concentration on nozzle clogging on Al-Ti deoxidation. Behavior of inclusion on Al-Ti deoxidation-2 [J]. CAMP-ISIJ, 1991, 4(4): 1237. (in Japanese).Google Scholar
  19. 19.
    Basu S, Choudhary S K, Girase N U. Nozzle clogging behaviour of Ti-bearing Al-killed ultra low carbon steel [J]. ISIJ Int., 2004, 44 (10): 1653–1660.CrossRefGoogle Scholar
  20. 20.
    Ruby-Meyer F, Lehmann J, Gaye H. Thermodynamic analysis of inclusions in Ti-deoxidised steels [J]. Scand. J. Metall., 2000, 29 (5): 206–212.CrossRefGoogle Scholar
  21. 21.
    Jung I, Decterov S A, Pelton A D. Computer applications of thermodynamic databases to inclusion engineering [J]. ISIJ Int., 2004, 44 (3): 527–536.CrossRefGoogle Scholar
  22. 22.
    Ito H, Hino M, Ban-ya S. Assessment of Al deoxidation equilibrium in liquid iron [J] Tetsu-to-Hagané, 1997, 83 (12): 773–778. (in Japanese).Google Scholar
  23. 23.
    Turkdogan E T. Physical Chemistry of High Temperature Technology [M]. New York: Academic Press, 1980.Google Scholar
  24. 24.
    Guo Yuanchang, Wang Changzhen, Yu Hualong. Interaction coefficients in the iron-carbon-titanium and titanium-silver systems [J]. Metall. Trans. B, 1990, 21B(3): 537–541.Google Scholar
  25. 25.
    Lupis C H P. Chemical Thermodynamics of Materials [M]. New York: North-Holland, 1983: 255.Google Scholar
  26. 26.
    Ohta M, Morita K. Thermodynamics of the Al2O3-SiO2-TiOx System at 1873 K [J]. ISIJ Int., 2002, 42 (5): 474–481.Google Scholar
  27. 27.
    Pajunen M, Kivilahti J. Thermodynamic analysis of the titanium-oxygen system [J]. Z. Metallkd., 1992, 83(1): 17–20.Google Scholar
  28. 28.
    Hiroyuki Matsuura, Wang Cong, Wen Guanghua, et al. The transient stages of inclusion evolution during Al and/or Ti additions to molten iron [J]. ISIJ Int., 2007, 47(9): 1265–1274.CrossRefGoogle Scholar
  29. 29.
    Jung In-Ho, Gunnar Eriksson, Wu Ping, et al. Thermodynamic modeling of the Al2O3-Ti2O3-TiO2 system and its applications to the Fe-Al-Ti-O inclusion diagram [J]. ISIJ Int., 2009, 49 (9): 1290–1297.Google Scholar
  30. 30.
    Basu S, Choudhary S K, Girase N U. Nozzle clogging behaviour of Ti-bearing Al-killed ultra low carbon steel [J]. ISIJ Int., 2004, 44 (10): 1653–1660.CrossRefGoogle Scholar
  31. 31.
    Park D-C, Jung I-H, Rhee P C H, et al. Reoxidation of Al-Ti containing steels by CaO-Al2O3-MgO-SiO2 slag [J]. ISIJ Int., 2004, 44 (10): 1669–1678.Google Scholar
  32. 32.
    Marie-Aline Van Ende, Guo Muxing, Rob Dekkers, et al. Formation and evolution of Al–Ti oxide inclusions during secondary steel refining [J]. ISIJ Int., 2009, 49(8): 1133–1140.CrossRefGoogle Scholar
  33. 33.
    Wang Min, Bao Yanping, Yang Quan. Effect of ferro-titanium alloying process on steel cleanness [J]. Journal of University of Science and Technology Beijing, 2013, 35(6): 725–732. (in Chinese).Google Scholar
  34. 34.
    Zhang Feng, Li Guangqiang. Control of ultra low titanium in ultra low carbon Al-Si killed steel [J]. Journal of Iron and Steel Research, International. 2013, 20(4): 20–25.CrossRefGoogle Scholar
  35. 35.
    Fabienne Ruby-Meyer, Jean Lehmann, Henri Gaye. Thermodynamic analysis of inclusions in Ti-deoxidized steels [J]. Scandinavian Journal of Metallurgy, 2000, 29(5): 206–212.CrossRefGoogle Scholar
  36. 36.
    G1oor K. Non-metallic inclusions in weld metal [R]. IIW DOCII-A-106–63, 1963.Google Scholar
  37. 37.
    Katoh K. Investigation of nonmetallic inclusions in mild steel weld metals [R]. IIW DOC II-A- 158–65, 1965.Google Scholar
  38. 38.
    Harrison P L, Farrar R A. Influence of oxygen-rich inclusions on the γ → α phase transformation in high-strength low-alloy (HSLA) steel weld metals [J], Journal of Materials Science, 1981, 16(8): 2218–2226.CrossRefGoogle Scholar
  39. 39.
    Takamura J I, Mizoguchi S. Role of oxides in steel performance [C]// Proceeding of the sixth international iron and steel congress. Nagoya, ISIJ. 1990: 591–597.Google Scholar
  40. 40.
    Song Yu, Li Guangqiang, Yang Fei. Impacts of Al-Ti-Mg complex deoxidation on inclusions and the microstructure of steel [J]. Journal of University of Science and Technology Beijing, 2011, 33(10): 1214–1219. (in Chinese).Google Scholar
  41. 41.
    Wang C, Noel T N, Seetharaman S. Transient behavior of inclusion chemistry, shape, and structure in Fe-Al-Ti-O melts: effect of titanium/aluminum ratio [J]. Metallurgical and materials transactions B, 2009, 40B(6): 1022–1034.CrossRefGoogle Scholar
  42. 42.
    Ohta H, Suito H. Characteristics of particle size distribution of deoxidation products with Mg, Zr, Al, Ca, Si/Mn and Mg/Al in Fe–10mass%Ni alloy [J]. ISIJ Int., 2006, 46(1): 14–22.CrossRefGoogle Scholar
  43. 43.
    Ohta H, Suito H. Dispersion behavior of MgO, ZrO2, Al2O3, CaO–Al2O3 and MnO–SiO2 deoxidation particles during solidification of Fe–10mass%Ni alloy [J]. ISIJ Int., 2006, 46 (1): 22–28.Google Scholar
  44. 44.
    Akselsen O M, Grong, Ryum N, et al. Modelling of grain growth in metals and alloys [J]. Acta Metallurgy. 1986, 34(9):1807–1811.Google Scholar
  45. 45.
    Miller O O. Influence of austenitizing time and temperature on austenite grain size of steel [J]. Tran ASM. 1951, 43:261–287.Google Scholar
  46. 46.
    Zener C. The effect of deformation on grain growth in Zener pinned systems [J]. Acta metal. 2001, 49(8): 1453–1461.Google Scholar
  47. 47.
    Li Peng. Influences of Al-Ti complex deoxidation on inclusions and the microstructure of non-quenched and tempered steel [D]. Wuhan: Wuhan University of Science and Technology, 2013. (in Chinese).Google Scholar
  48. 48.
    Zheng Wan, Wu Zhenhua, Li Guangqiang. Effect of Al content on the characteristics of inclusions in Al–Ti complex deoxidized steel with calcium treatment [J], ISIJ Int., 2014, 54 (8): 1755–1764.CrossRefGoogle Scholar
  49. 49.
    Wu Zhenhua, Zheng Wan, Li Guangqiang, et al. Effect of inclusions’ behavior on the microstructure in Al-Ti deoxidized and magnesium-treated steel with different aluminum contents [J], Metallurgical and Materials Transactions B, 2015, 46B(3): 1226–1241.CrossRefGoogle Scholar

Copyright information

© Metallurgical Industry Press, Beijing and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Wuhan University of Science and TechnologyWuhanChina

Personalised recommendations