Sustainable Construction and Building Materials—A Review on Performance of Geopolymer in Concrete

  • M. PriyankaEmail author
  • N. Ruben
Conference paper
Part of the Lecture Notes in Civil Engineering book series (LNCE, volume 25)


Concrete, the largest construction material in the world, is already regarded as basic need of human being. The binding material in the concrete is cement which comes from a non-renewable resource limestone. With the large use of cement, there may be a scarcity for limestone in near future but the need for concrete for the human will not end. Geopolymer, an alternative to the cement, can be used in concrete to make it cement-free. Geopolymer is the material having silica and alumina contents like cement and can be used as binding material using activators. This paper describes the review on geopolymer concrete elaborating the various properties of concrete by adding geopolymer. A comparative review of physical and durability properties was also presented between geopolymer concrete and ordinary Portland cement concrete.


Geopolymer concrete Durability Physical properties 


  1. 1.
    Davidovits, J. (1999). Chemistry of geopolymeric systems terminology. In Proceedings of 2nd International Conference on Geopolymer’99 (pp. 9–22). Geopolymer Institute, Saint Quentin, France.Google Scholar
  2. 2.
    Ghosh, K., & Ghosh, P. (2012). Effect of %Na2O and %Sio2 on apperent porosity and sorptivity of fly ash based geopolymer. IOSR Journal of Engineering (IOSRJEN), 2(8), 96–101. ISSN: 2250-3021.CrossRefGoogle Scholar
  3. 3.
    Nagalia, G., Park, Y., Abolmaali, A., & Aswath, P. (2016). Compressive strength and micro structural properties of fly ash-based geopolymer concrete. Journal of Materials in Civil Engineering, 28(12), 04016144.CrossRefGoogle Scholar
  4. 4.
    Inti, S., Sharma, M., & Tandon, V. (2017). Ground granulated blast furnace slag (GGBS) and rice husk ash (RHA) uses in the production of geopolymer concrete. Journal of Materials in Civil Engineering, 29(1), 621.Google Scholar
  5. 5.
    Duxson, P., Lukey, G. C., & van Deventer, J. S. J. (2006). Thermal evolution of metakaolin geopolymers: Part 1—Physical evolution. Journal of Non-crystalline Solids, 352(52–54), 5541–5555.CrossRefGoogle Scholar
  6. 6.
    Bhutta, M. A. R., Hussin, W. M., Azreen, M., & Tahir, M. M. (2014). Sulphate resistance of geopolymer concrete prepared from blended waste fuel ash. Journal of Materials in Civil Engineering, 26(11), 04014080.CrossRefGoogle Scholar
  7. 7.
    Van Jaarsveld, J., & Van Deventure, J. (1999). Effect of alkali metal activators on the properties of fly ash-based geopolymer. Industrial and Engineering Chemistry Research, 38, 3932.CrossRefGoogle Scholar
  8. 8.
    Hardjito, D., Wallah, S. E., Sumajouw, D. M. J., & Rangan, B. V. (2004). On the development of fly ash-based geopolymer concrete. ACI Materials Journal, 101, 467–472.Google Scholar
  9. 9.
    Jamdade, P. K., & Kawade, U. R. (2014). Evaluate strength of geopolymer concrete by using oven curing. IOSR Journal of Mechanical and Civil Engineering, 11, 63–66.CrossRefGoogle Scholar
  10. 10.
    Aravind, A., & Paul, M. M. (2014). Study of mechanical properties of geopolymer concrete reinforced with steel fiber. International Journal of Engineering Research and Technology, 3(9), 24 September 2014. ISSN: 2278-0181.Google Scholar
  11. 11.
    Shah, C. K., Parikh, A. R., & Parmar, K. J. (2014). Study of strength parameters and durability of fly ash based geopolymer concrete. Indian Journal of Research, 3(7), July 2014. ISSN: 2250-1991.CrossRefGoogle Scholar
  12. 12.
    Fernandez-Jiminez, A. M., Palomo, A., & Lopez-Hombrados, C. (2006). Engineering properties of alkali-activated fly ash concrete. ACI Materials Journal, 103, 106–112.Google Scholar
  13. 13.
    Rajamane, N. P., Natraja, M. C., Dattatreya, J. K., Lakshmanan, N., & Sabitha, D. (2012). Sulphate resistance and eco-friendliness of geopolymer concretes. Indian Concrete Journal, 86, 13–21.Google Scholar
  14. 14.
    Patil, K. K., & Allouche, E. N. (2013). Impact of alkali silica reaction on fly ash-based geopolymer concrete. Journal of Materials in Civil Engineering ASCE, 25, 131–139.CrossRefGoogle Scholar
  15. 15.
    Fernandez-Jimenez, A., & Puertas, F. (2002). The alkali-silica reaction in alkali-activated granulated slag mortars with reactive aggregate. Cement and Concrete Research, 32, 1019–1024.CrossRefGoogle Scholar
  16. 16.
    Garcia-Lodeiro, I., Palomo, A., & Fernandez-Jimenez, A. (2007). The alkali-aggregate reaction in alkali activated fly ash mortars. Cement and Concrete Research, 37, 175–183.CrossRefGoogle Scholar
  17. 17.
    Singh, B., Ishwarya, G., Gupta, M., & Bhattacharyya, S. K. (2014). Performance evaluation of geopolymer concrete through alkali-silica reaction. In Advances in chemically activated materials, Changsha, China, Jun 1–3, 2014.Google Scholar
  18. 18.
    Davidovits, J. (1991). Geopolymers: Inorganic polymeric new materials. Journal of Thermal Analysis, 37, 1633–1656.CrossRefGoogle Scholar
  19. 19.
    Bakharev, T. (2005). Resistance of geopolymer materials to acid attack. Cement and Concrete Research, 35, 658–670.CrossRefGoogle Scholar
  20. 20.
    Bakharev, T. (2005). Durability of geopolymer materials in sodium and magnesium sulfate solutions. Cement and Concrete Research, 35, 1233–1246.CrossRefGoogle Scholar
  21. 21.
    Ariffin, M. A. M., Bhutta, M. A. R., Hussin, M. W., Mohd Tahir, M., & Aziah, N. (2013). Sulfuric acid resistance of blended ash geopolymer concrete. Construction and Building Materials, 43, 80–86.CrossRefGoogle Scholar
  22. 22.
    Bakharev, T., Sanjayan, J. G., & Cheng, Y.-B. (2003). Resistance of alkali-activated slag concrete to acid attack. Cement and Concrete Research, 33, 1607–1611.CrossRefGoogle Scholar
  23. 23.
    Ismail, I., Bernal, S. A., Provis, J. L., Hamdan, S., & van Deventer, J. S. J. (2013). Microstructural changes in alkali activated fly ash/slag geopolymers with sulphate exposure. Materials and Structures, 46, 361–373.CrossRefGoogle Scholar
  24. 24.
    Olivia, M., & Nikraz, H. (2012). Properties of fly ash geopolymer concrete designed by Taguchi method. Materials and Design, 36, 191–198.CrossRefGoogle Scholar
  25. 25.
    Sathia, R., Ganesh Babu, K., & Santhanam, M. (2008). Durability study of low calcium fly ash geopolymer concrete. In: 3rd ACF International Conference, Ho Chi Minh City, Vietnam.Google Scholar
  26. 26.
    Fernandez-Jimenez, A., Reddy, D. V., Edouard, J. B., Sobhan, K., & Tipni, A. (2011). Experimental evaluation of the durability of fly ash-based geopolymer concrete in the marine environment. In: 9th Latin American and Caribbean conference on engineering for a smart planet, innovation, information technology and computational tools for sustainable development, Colombia, Australia.Google Scholar
  27. 27.
    Neville, A. M. (1997). Properties of concrete (4th ed.) India: Dorling Kindersley Publishing, Inc..Google Scholar
  28. 28.
    Kong, D. L. K., Sanjayan, J. G., & Crentsil, K. S. (2007). Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperature. Cement and Concrete Research, 37, 1583–1589.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Civil EngineeringVignan’s Foundation for Science, Technology and ResearchVadlamudi, GunturIndia

Personalised recommendations