Advertisement

Periodic Material-Based Three-Dimensional (3D) Seismic Base Isolators for Small Modular Reactors

  • Y. L. MoEmail author
  • Witarto Witarto
  • Kuo-Chun Chang
  • Shiang-Jung Wang
  • Yu Tang
  • Robert P. Kassawara
Conference paper

Abstract

The concept of frequency band gaps in periodic materials has inspired the development of a new type of seismic base isolation system known as the periodic foundation. This paper focuses on the experimental validation of the 3D periodic foundation supporting a small modular reactor building. A large-scale 3D periodic foundation with a small modular reactor (SMR) building model was tested on a shake table using various input waves. The frequency band gaps of the test specimen were able to filter out the damaging frequency content of the input seismic waves. The test results motivate the application of periodic foundations for safer nuclear structures in seismic-prone regions.

Notes

Acknowledgements

The authors acknowledge the support of the US Department of Energy NEUP Program (Proj. No. CFA-14-6446). The opinions and conclusions expressed or implied in the paper are those of the authors. They are not necessarily those of the supporting agency.

References

  1. Buckle, I. G., & Mayes, R. L. (1990). Seismic isolation: History, application, and performance—a world view. Earthquake spectra, 6(2), 161–201.CrossRefGoogle Scholar
  2. Furukawa, S., Sato, E., Shi, Y., Becker, T., & Nakashima, M. (2013). Full-scale shaking table test of a base-isolated medical facility subjected to vertical motions. Earthquake Engineering and Structural Dynamics, 42(13), 1931–1940.CrossRefGoogle Scholar
  3. Inoue, K., Fushimi, M., Satoshi Moro, Morishita, M., Kitamura, S., & Fujita, T. (2004). Development of three-dimensional seismic isolation system for next generation nuclear power plant. In 13th World Conference on Earthquake Engineering, Vancouver, B.C., Canada.Google Scholar
  4. Kittel, C. (2005). Introduction to solid state physics. Hoboken: Wiley.zbMATHGoogle Scholar
  5. Krawinkler, H., Moncarz, P. D. (1982). Similitude requirements for dynamic models. ACI Special Publication, 73.Google Scholar
  6. Kushwaha, M. S., Halevi, P., Martinez, G., Dobrzynski, L., & Djafari-Rouhani, B. (1994). Theory of acoustic band structure of periodic elastic composites. Physical Review B, 49(4), 2313.CrossRefGoogle Scholar
  7. Naeim, F., Kelly, J. M. (1999). Design of seismic isolated structures: From theory to practice. New York: Wiley.Google Scholar
  8. Okamura, S., Kamishima, Y., Negishi, K., Sakamoto, Y., Kitamura, S., & Kotake, S. (2011). Seismic isolation design for JSFR. Journal of Nuclear Science and Technology, 48(4), 688–692.CrossRefGoogle Scholar
  9. PEER ground motion database. (2016). http://ngawest2.berkeley.edu/.
  10. Ryan, K. L., Soroushian, S., Maragakis, E. M., Sato, E., Sasaki, T., & Okazaki, T. (2016). Seismic simulation of an integrated ceiling-partition wall-piping system at e-defense. I: Three-dimensional structural response and base isolation. Journal of Structural Engineering, 142(2), 04015130.CrossRefGoogle Scholar
  11. Suhara, J., Matsumoto, R., Oguri, S., Okada, Y., Inoue, K., & Takahashi, K. (2005). Research on 3-D base isolation system applied to new power reactor 3-D seismic isolation device with rolling seal type air spring: Part 2. In 18th International Conference on Structural Mechanics in Reactor Technology (SMiRT 18) (pp. 3381–3391), Beijing, China: SMiRT18.Google Scholar
  12. Suhara, J., Tamura, T., Okada, Y., & Umeki, K. (2002). Development of three dimensional seismic isolation device with laminated rubber bearing and rolling seal type air spring. In ASME 2002 Pressure Vessels and Piping Conference (pp. 43–48), Vancouver, BC, Canada. American Society of Mechanical Engineer.Google Scholar
  13. Takahashi, O., Aida, H., Suhara, J., Matsumoto, R., Tsuyuki, Y., & Fujita, T. (2008). Construction of civil building using three dimensional seismic isolation system: Part 1, design of building using three dimensional seismic isolation system. In The 14th World Conference on Earthquake Engineering, Beijing, China.Google Scholar
  14. Torres, M., & Montero de Espinosa, F. R. (2004). Ultrasonic band gaps and negative refraction. Ultrasonics, 42, 787–790.CrossRefGoogle Scholar
  15. Welch, P. D. (1967). The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Transactions on Audio and Electroacoustics, 15(2), 70–73.CrossRefGoogle Scholar
  16. Witarto, W., Wang, S. J., Yang, C. Y., Nie, X., Mo, Y. L., Chang, K. C., et al. (2018). Seismic isolation of small modular reactors using metamaterials. AIP Advances, 8(4), 045307.CrossRefGoogle Scholar
  17. Xiang, H. J., Shi, Z. F., Wang, S. J., & Mo, Y. L. (2012). Periodic materials-based vibration attenuation in layered foundations: Experimental validation. Smart Materials and Structures, 21, 1–10.CrossRefGoogle Scholar
  18. Yan, Y., Cheng, Z., Menq, F., Mo, Y. L., Tang, Y., & Shi, Z. (2015). Three dimensional periodic foundations for base seismic isolation. Smart Materials and Structures, 24(7), 075006.CrossRefGoogle Scholar
  19. Yan, Y., Laskar, A., Cheng, Z., Menq, F., Tang, Y., Mo, Y. L., et al. (2014). Seismic isolation of two dimensional periodic foundations. Journal of Applied Physics, 116(4), 044908.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Y. L. Mo
    • 1
    Email author
  • Witarto Witarto
    • 1
  • Kuo-Chun Chang
    • 2
  • Shiang-Jung Wang
    • 3
  • Yu Tang
    • 4
  • Robert P. Kassawara
    • 5
  1. 1.Department of Civil and Environmental EngineeringUniversity of HoustonHoustonUSA
  2. 2.Department of Civil EngineeringNational Taiwan UniversityTaipeiTaiwan
  3. 3.National Taiwan University of Science and TechnologyTaipeiTaiwan
  4. 4.Argonne National LaboratoryLemontUSA
  5. 5.Electric Power Research InstitutePalo AltoUSA

Personalised recommendations