Advertisement

Micro-electrometer Based on Mode-Localization Effect

  • Chun ZhaoEmail author
  • Huafeng Liu
  • Peiyi Song
  • Fangjing Hu
Chapter
  • 50 Downloads

Abstract

Resonant micro-electrometers have been the research interest to many groups around the world. Conventionally, the resonant electrometers rely on a frequency-shift based readout. In this chapter, a new type of resonant micro-electrometer based on mode-localization effect is introduced and discussed. This new electrometer implementation is one subset of a broader family of sensors termed as “mode-localized sensors”. The readout metric of this category of sensors is essentially based on amplitude modulation, which is a key identifier of this approach. In addition to the sensing paradigm shift, the mode-localized sensors have a distinguishable topology to the convention based on a single resonator: that is, typically more than one resonators are intentionally coupled to each other through a coupling element, to allow spatial energy extension. Due the advantages that accompany the unique configurations, such as higher sensitivity and common mode rejection capabilities, the new sensing scheme has quickly attracted researchers’ attention. And naturally it has been adapted for electrometer applications. Currently, the resolution that can be achieved by an electrometer utilizing this approach can be less than 10 e/Hz\(^{1/2}\). Future directions to further enhance the sensor performance are also discussed.

References

  1. 1.
    A.N. Cleland, M.L. Roukes, A nanometre-scale mechanical electrometer. Nature 392(6672), 160 (1998)CrossRefGoogle Scholar
  2. 2.
    J.E.Y. Lee, B. Bahreyni, A.A. Seshia, An axial strain modulated double-ended tuning fork electrometer. Sens. Actuators Phys. 148(2), 395–400 (2008)CrossRefGoogle Scholar
  3. 3.
    A.A. Seshia, M. Palaniapan, T.A. Roessig, R.T. Howe, R.W. Gooch, T.R. Schimert, S. Montague, A vacuum packaged surface micromachined resonant accelerometer. J. Microelectromech. Syst. 11(6), 784–793 (2002)CrossRefGoogle Scholar
  4. 4.
    R.H. Olsson, K.E. Wojciechowski, M.S. Baker, M.R. Tuck, J.G. Fleming, Post-CMOS-compatible aluminum nitride resonant MEMS accelerometers. J. Microelectromech. Syst. 18(3), 671–678 (2009)CrossRefGoogle Scholar
  5. 5.
    C. Comi, A. Corigliano, G. Langfelder, A. Longoni, A. Tocchio, B. Simoni, A resonant microaccelerometer with high sensitivity operating in an oscillating circuit. J. Microelectromech. Syst. 19(5), 1140–1152 (2010)CrossRefGoogle Scholar
  6. 6.
    X. Zou, P. Thiruvenkatanathan, A.A. Seshia, A seismic-grade resonant MEMS accelerometer. J. Microelectromech. Syst. 23(4), 768–770 (2014)CrossRefGoogle Scholar
  7. 7.
    D.D. Shin, C.H. Ahn, Y. Chen, D.L. Christensen, I.B. Flader, T.W. Kenny, Environmentally robust differential resonant accelerometer in a wafer-scale encapsulation process, in 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, 2017), pp. 17–20Google Scholar
  8. 8.
    Y. Yin, Z. Fang, F. Han, B. Yan, J. Dong, Q. Wu, Design and test of a micromachined resonant accelerometer with high scale factor and low noise. Sens. Actuators Phys. 268, 52–60 (2017)CrossRefGoogle Scholar
  9. 9.
    R. Sunier, T. Vancura, Y. Li, K.U. Kirstein, H. Baltes, O. Brand, Resonant magnetic field sensor with frequency output. J. Microelectromech. Syst. 15(5), 1098–1107 (2006)CrossRefGoogle Scholar
  10. 10.
    B. Bahreyni, C. Shafai, A resonant micromachined magnetic field sensor. IEEE Sens. J. 7(9), 1326–1334 (2007)CrossRefGoogle Scholar
  11. 11.
    M. Li, S. Nitzan, D.A. Horsley, Frequency-modulated Lorentz force magnetometer with enhanced sensitivity via mechanical amplification. IEEE Electron Device Lett. 36(1), 62–64 (2015)CrossRefGoogle Scholar
  12. 12.
    Y. Hui, T. Nan, N.X. Sun, M. Rinaldi, High resolution magnetometer based on a high frequency magnetoelectric MEMS-CMOS oscillator. J. Microelectromech. Syst. 24(1), 134–143 (2015)CrossRefGoogle Scholar
  13. 13.
    T.R. Albrecht, P. Grütter, D. Horne, D. Rugar, Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity. J. Appl. Phys. 69(2), 668–673 (1991)CrossRefGoogle Scholar
  14. 14.
    F.J. Giessibl, S. Hembacher, H. Bielefeldt, J. Mannhart, Subatomic features on the silicon (111)-(7Œ7) surface observed by atomic force microscopy. Science 289(5478), 422–425 (2000)CrossRefGoogle Scholar
  15. 15.
    J.A. Harley, T.W. Kenny, A high-stiffness axial resonant probe for atomic force microscopy. J. Microelectromech. Syst. 10(3), 434–441 (2001)CrossRefGoogle Scholar
  16. 16.
    E. Algre, Z. Xiong, M. Faucher, B. Walter, L. Buchaillot, B. Legrand, MEMS ring resonators for laserless AFM with sub-nanoNewton force resolution. J. Microelectromech. Syst. 21(2), 385–397 (2012)CrossRefGoogle Scholar
  17. 17.
    Y. Zhu, J.E.Y. Lee, A.A. Seshia, A resonant micromachined electrostatic charge sensor. IEEE Sens. J. 8(9), 1499–1505 (2008)CrossRefGoogle Scholar
  18. 18.
    C. Zhao, M. Pandit, G. Sobreviela, A. Mustafazade, S. Du, X. Zou, A. Seshia, On the noise optimization of resonant MEMS sensors utilizing vibration mode localization. Appl. Phys. Lett. 112(19), 194103 (2018)CrossRefGoogle Scholar
  19. 19.
    P. Thiruvenkatanathan, J. Yan, J. Woodhouse, A. Aziz, A.A. Seshia, Effects of mechanical and electrical coupling on the parametric sensitivity of mode localized sensors, in 2009 IEEE International Ultrasonics Symposium (IEEE, 2009), pp. 1183–1186Google Scholar
  20. 20.
    M. Spletzer, A. Raman, A.Q. Wu, X. Xu, R. Reifenberger, Ultrasensitive mass sensing using mode localization in coupled microcantilevers. Appl. Phys. Lett. 88(25), 254102 (2006)CrossRefGoogle Scholar
  21. 21.
    P. Thiruvenkatanathan, J. Yan, A.A. Seshia, Differential amplification of structural perturbations in weakly coupled MEMS resonators. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(3), 690–697 (2010)CrossRefGoogle Scholar
  22. 22.
    M. Pandit, C. Zhao, G. Sobreviela, A.A. Seshia, Immunity to Temperature Fluctuations in Weakly Coupled MEMS Resonators, in 2018 IEEE Sensors (IEEE, 2018), pp. 1–4Google Scholar
  23. 23.
    C. Zhao, A MEMS sensor for stiffness change sensing applications based on three weakly coupled resonators, Doctoral dissertation, University of Southampton, 2016Google Scholar
  24. 24.
    H. Kang, J. Yang, H. Chang, A closed-loop accelerometer based on three degree-of-freedom weakly coupled resonator with self-elimination of feedthrough signal. IEEE Sens. J. 18(10), 3960–3967 (2018)CrossRefGoogle Scholar
  25. 25.
    C. Zhao, G.S. Wood, J. Xie, H. Chang, S.H. Pu, M. Kraft, A three degree-of-freedom weakly coupled resonator sensor with enhanced stiffness sensitivity. J. Microelectromech. Syst. 25(1), 38–51 (2016)CrossRefGoogle Scholar
  26. 26.
    H. Kang, J. Yang, H. Chang, A mode-localized accelerometer based on four degree-of-freedom weakly coupled resonators, in 2018 IEEE Micro Electro Mechanical Systems (MEMS) (IEEE, 2018), pp. 960–963Google Scholar
  27. 27.
    B. Peng, K.M. Hu, L. Shao, H. Yan, L. Li, X. Wei, W.M. Zhang, A sensitivity tunable accelerometer based on series-parallel electromechanically coupled resonators using mode localization. J. Microelectromech. Syst. (2019)Google Scholar
  28. 28.
    M. Spletzer, A. Raman, H. Sumali, J.P. Sullivan, Highly sensitive mass detection and identification using vibration localization in coupled microcantilever arrays. Appl. Phys. Lett. 92(11), 114102 (2008)CrossRefGoogle Scholar
  29. 29.
    P. Thiruvenkatanathan, J. Yan, A.A. Seshia, Ultrasensitive mode-localized micromechanical electrometer, in 2010 IEEE International Frequency Control Symposium (IEEE, 2010), pp. 91–96Google Scholar
  30. 30.
    P. Thiruvenkatanathan, J. Yan, J. Woodhouse, A. Aziz, A.A. Seshia, Ultrasensitive mode-localized mass sensor with electrically tunable parametric sensitivity. Appl. Phys. Lett. 96(8), 081913 (2010)CrossRefGoogle Scholar
  31. 31.
    R.N. Candler, A. Duwel, M. Varghese, S.A. Chandorkar, M.A. Hopcroft, W.T. Park, T.W. Kenny, Impact of geometry on thermoelastic dissipation in micromechanical resonant beams. J. Microelectromech. Syst. 15(4), 927–934 (2006)CrossRefGoogle Scholar
  32. 32.
    V. Kaajakari, T. Mattila, A. Oja, H.A.S.H. Seppa, Nonlinear limits for single-crystal silicon microresonators. J. Microelectromech. Syst. 13(5), 715–724 (2004)CrossRefGoogle Scholar
  33. 33.
    P. Thiruvenkatanathan, J. Yan, J. Woodhouse, A.A. Seshia, Enhancing parametric sensitivity in electrically coupled MEMS resonators. J. Microelectromech. Syst. 18(5), 1077–1086 (2009)CrossRefGoogle Scholar
  34. 34.
    M. Pandit, C. Zhao, G. Sobreviela, A. Mustafazade, X. Zou, A.A. Seshia, A mode-localized MEMS accelerometer with 7\(\mu \)g bias stability, in 2018 IEEE Micro Electro Mechanical Systems (MEMS) (IEEE, 2018), pp. 968–971Google Scholar
  35. 35.
    H. Zhang, W. Yuan, J. Huang, B. Li, H. Chang, A high-sensitive resonant electrometer based on mode localization of the weakly coupled resonators, in 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, 2016), pp. 87–90Google Scholar
  36. 36.
    J. Yang, H. Kang, H. Chang, A micro resonant electrometer with 9-electron charge resolution in room temperature, in 2018 IEEE Micro Electro Mechanical Systems (MEMS) (IEEE, 2018), pp. 67–70Google Scholar
  37. 37.
    T.A.W. Roessig, Integrated MEMS tuning fork oscillators for sensor applications. Ph.D. thesis, UC Berkely, 1999Google Scholar
  38. 38.
    C. Zhao, M. Pandit, G. Sobreviela, A. Mustafazade, S. Du, X. Zou, A. Seshia, Supplementary: on the noise optimization of resonant MEMS sensors utilizing vibration mode localization. Appl. Phys. Lett. 112(19), 194103 (2018)CrossRefGoogle Scholar
  39. 39.
    C. Zhao, M. Pandit, B. Sun, G. Sobreviela, X. Zou, A. Seshia, A closed-loop readout configuration for mode-localized resonant MEMS sensors. J. Microelectromech. Syst. 26(3), 501–503 (2017)CrossRefGoogle Scholar
  40. 40.
    M. Pandit, C. Zhao, G. Sobreviela, A. Mustafazade, S. Du, X. Zou, A.A. Seshia, Closed-loop characterization of noise and stability in a mode-localized resonant MEMS sensor. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 66(1), 170–180 (2019)CrossRefGoogle Scholar
  41. 41.
    C. Zhao, G.S. Wood, J. Xie, H. Chang, S.H. Pu, M. Kraft, A comparative study of output metrics for an MEMS resonant sensor consisting of three weakly coupled resonators. J. Microelectromech. Syst. 25(4), 626–636 (2016)CrossRefGoogle Scholar
  42. 42.
    H.K. Lee, R. Melamud, S. Chandorkar, J. Salvia, S. Yoneoka, T.W. Kenny, Stable operation of MEMS oscillators far above the critical vibration amplitude in the nonlinear regime. J. Microelectromech. Syst. 20(6), 1228–1230 (2011)CrossRefGoogle Scholar
  43. 43.
    L.G. Villanueva, E. Kenig, R.B. Karabalin, M.H. Matheny, R. Lifshitz, M.C. Cross, M.L. Roukes, Surpassing fundamental limits of oscillators using nonlinear resonators. Phys. Rev. Lett. 110(17), 177208 (2013)CrossRefGoogle Scholar
  44. 44.
    M. Pandit, C. Zhao, G. Sobreviela, S. Du, X. Zou, A. Seshia, Utilizing energy localization in weakly coupled nonlinear resonators for sensing applications. J. Microelectromech. Syst. (2019)Google Scholar
  45. 45.
    C. Zhao, G. Sobreviela, M. Pandit, S. Du, X. Zou, A. Seshia, Experimental observation of noise reduction in weakly coupled nonlinear MEMS resonators. J. Microelectromech. Syst. 26(6), 1196–1203 (2017)CrossRefGoogle Scholar
  46. 46.
    J. Juillard, P. Prache, N. Barniol, Analysis of mutually injection-locked oscillators for differential resonant sensing. IEEE Trans. Circ. Syst. I Regul. Pap. 63(7), 1055–1066 (2016)MathSciNetCrossRefGoogle Scholar
  47. 47.
    P. Prache, A. Uranga, N. Barniol, J. Juillard, Temperature-drift rejection and sensitivity to mismatch of synchronized strongly-coupled M/NEMS resonators, in 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, 2016), pp. 1054–1057Google Scholar
  48. 48.
    P. Prache, J. Juillard, P.M. Ferreira, N. Barniol, M. Riverola, Design and characterization of a monolithic CMOS-MEMS mutually injection-locked oscillator for differential resonant sensing. Sens. Actuators Phys. 269, 160–170 (2018)CrossRefGoogle Scholar
  49. 49.
    J. Juillard, P. Prache, P.M. Ferreira, N. Barniol, Ultimate limits of differential resonant MEMS sensors based on two coupled linear resonators. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(12), 2440–2448 (2018)CrossRefGoogle Scholar
  50. 50.
    J. Juillard, A. Mostafa, P.M. Ferreira, Nonlinear enhancement of locking range of mutually injection-locked oscillators for resonant sensing applications, in 2018 European Frequency and Time Forum (EFTF) (IEEE, 2018), pp. 109–113Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Chun Zhao
    • 1
    Email author
  • Huafeng Liu
    • 1
  • Peiyi Song
    • 1
  • Fangjing Hu
    • 1
  1. 1.Centre for Gravitational Experiments, Huazhong University of Science and TechnologyWuhanChina

Personalised recommendations