Advertisement

Social Performance of Electricity Generation in a Solar Power Plant in Spain—A Life Cycle Perspective

  • Blanca Corona
  • Guillermo San Miguel
Chapter
Part of the Environmental Footprints and Eco-design of Products and Processes book series (EFEPP)

Abstract

This publication demonstrates the practical application of Social Life Cycle Assessment (S-LCA) methodology in the analysis of a 50 MWe Concentrating Solar Power (CSP) plant located in Spain. The assessment makes use of two complementary analytical approaches: (1) a generic social hotspot analysis based on the social risks related to financial flows generated by the provision of goods and services taking place during the life cycle of the power generation system, and then (2) a site-specific analysis focussing on the social performance of the construction/energy company involved in the construction and operation of the power plant. The site-specific analysis followed the procedures proposed by UNEP/SETAC but included a new classification/characterization model suited to the particularities of the project and the energy sector. The analysis considered four stakeholder categories (workers; local community; society; and value chain actors) and used the number of worker hours as activity variable for the quantification of social risks. Worker hours attributable to each of the stages of the life cycle of the CSP system were calculated using input-output (IO) analysis. The impact assessment phase of the S-LCA was carried out using a Social Performance Indicator (SPI), which required the estimation of performance reference points for a series of indicators/subcategories proposed by the UNEP/SETAC Guidelines. The SPI calculated for the CSP plant (+0.388 for a ±2 range) suggested that the use of solar power results in an increase of social welfare in Spain, primarily with regards to socioeconomic sustainability and fairness of relationships. The inventory data used in the social hotspot analysis were monetary flows attributable to each of the processes considered in the life cycle of the power system. These flows were assigned to the corresponding sector of the producer country. The Social Hotspot Database (SHDB) was used to link these demand values to social risks and opportunities. The results showed that the life cycle phase contributing the most to the social risk of the solar power system was operation and management. This is due primarily (over 75% of the weighed risk) to the social risks associated with the supply chain of the natural gas used as auxiliary fuel. For Spain, the main social risks associated with the solar power plant were related to gender inequality and corruption, and to a lesser extent to injuries and immigrants. Some of these risks were confirmed in the site-specific assessment. The paper ends with a discussion about the application of Multi-Criteria Decision Making (MCDM) for evaluating the results obtained in this Social-LCA in combination with environmental and economic oriented LCA.

Keywords

S-LCA Electricity Social performance Spain Social risks Stakeholders 

Notes

Acknowledgements

This research was partially supported by the European Commission under the project Innovative Configuration for a Fully Renewable Hybrid CSP Plant FP7-ENERGY-2012-1 CP 308912.

References

  1. ABC. (2011). Las centrales termosolares han creado 160 empleos directos. http://www.abc.es/20110522/comunidad-castillalamancha/abcp-centrales-termosolares-creado-empleos-20110522.html. Accessed April 6, 2015.
  2. AEAS. (2014). Guía de Tarifas de los Servicios de Abastecimiento y Saneamiento de Agua, 2014-01-13 09-25-05.888GUIA TARIFAS AEAS FEMP.pdf. Last visited January 2018.Google Scholar
  3. African National Context. (1994). The reconstruction and development programme. A policy framework. http://www.polity.org.za/polity/govdocs/rdp/rdp.html. Accessed June 17, 2015.
  4. Beneyto, P. J. (2010). Afiliación y representación sindical en Europa. Ultimos datos y estudios comparados. http://www.1mayo.ccoo.es/nova/files/1018/Estudio37.pdf. Accessed February 6, 2015.
  5. Benoit-Norris, C., Norris, G. A., & Aulisio, D. (2013). The Social Hotspots Database V2. New Earth.Google Scholar
  6. Biermann, F., Kanie, N., & Kim, R. E. (2017). Global governance by goal-setting: The novel approach of the UN Sustainable Development Goals. Current Opinion in Environmental Sustainability, 26–27, 26–31.  https://doi.org/10.1016/j.cosust.2017.01.010.CrossRefGoogle Scholar
  7. BOE. (2014). Real Decreto 1106/2014, de 26 de diciembre, por el que se fija el salario mínimo interprofesional para 2015. BOE-A-2014-13518, 313: 105840–105842.Google Scholar
  8. Burkhardt, J. J., Heath, G., & Cohen, E. (2012). Life cycle greenhouse gas emissions of trough and tower concentrating solar power electricity generation: Systematic review and harmonization. Journal of Industrial Ecology, 16.  https://doi.org/10.1111/j.1530-9290.2012.00474.x.
  9. Burkhardt, J. J., Heath, G. A., & Turchi, C. S. (2011). Life cycle assessment of a parabolic trough concentrating solar power plant and the impacts of key design alternatives. Environmental Science & Technology, 45, 2457–2464.  https://doi.org/10.1021/es1033266.CrossRefGoogle Scholar
  10. Chhipi-Shrestha, G. K., Hewage, K., & Sadiq, R. (2014). ‘Socializing’sustainability: A critical review on current development status of social life cycle impact assessment method. Clean Technologies and Environmental Policy, 17(3), 579–596.CrossRefGoogle Scholar
  11. Cinelli, M., Coles, S. R., Jørgensen, A., Zamagni, A., Fernando, C., & Kirwan, K. (2013). Workshop on life cycle sustainability assessment: The state of the art and research needs—November 26, 2012, Copenhagen, Denmark. The International Journal of Life Cycle Assessment, 1–4.Google Scholar
  12. Ciroth, A., & Franze, J. (2011). LCA of an ecolabeled notebook: Consideration of social and environmental impacts along the entire life cycle. ISBN 978-1-4466-0087-0.Google Scholar
  13. Ciroth, A., & Franze, J. (2011). LCA of an ecolabeled notebook: Consideration of social and environmental impacts along the entire life cycleLulu. com.Google Scholar
  14. Corona, B., Bozhilova-Kisheva, K. P., Olsen, S. I., & San Miguel, G. (2017). Social life cycle assessment of a concentrated solar power plant in Spain: A methodological proposal. Journal of Industrial Ecology 21.  https://doi.org/10.1111/jiec.12541.
  15. Corona, B., Cerrajero, E., López, D., & San Miguel, G. (2016a). Full environmental life cycle cost analysis of concentrating solar power technology: Contribution of externalities to overall energy costs. Solar Energy, 135.  https://doi.org/10.1016/j.solener.2016.06.059.
  16. Corona, B., Rúa, C. D. L., & San Miguel, G. (2016b). Socio-economic and environmental effects of concentrated solar power in Spain: A multiregional input output analysis. Solar Energy Materials and Solar cells, 156.  https://doi.org/10.1016/j.solmat.2016.03.014.
  17. Corona, B., Ruiz, D., & San Miguel, G. (2016c). Environmental Assessment of a HYSOL CSP Plant Compared to a Conventional Tower CSP Plant. Procedia Computer Science.  https://doi.org/10.1016/j.procs.2016.04.231.
  18. Corona, B., Ruiz, D., & San Miguel, G. (2016d). Life cycle assessment of a HYSOL concentrated solar power plant: Analyzing the effect of geographic location, Energies 9.  https://doi.org/10.3390/en9060413.
  19. Corona, B., & San Miguel, G. (2015). Environmental analysis of a concentrated solar power (CSP) plant hybridised with different fossil and renewable fuels. Fuel 145.  https://doi.org/10.1016/j.fuel.2014.12.068.
  20. Corona, B., & San Miguel, G. (2018). Life cycle sustainability analysis of an innovative configuration of concentrated solar power technology: A methodological proposal. The International Journal of Life Cycle Assessment (submitted).Google Scholar
  21. Corona, B., San Miguel, G., & Cerrajero, E. (2014). Life cycle assessment of concentrated solar power (CSP) and the influence of hybridising with natural gas. The International Journal of Life Cycle Assessment 19.  https://doi.org/10.1007/s11367-014-0728-z.
  22. Desideri, U., Zepparelli, F., Morettini, V., & Garroni, E. (2013). Comparative analysis of concentrating solar power and photovoltaic technologies: Technical and environmental evaluations. Applied Energy, 102, 765–784.  https://doi.org/10.1016/j.apenergy.2012.08.033.CrossRefGoogle Scholar
  23. Dreyer, L., Hauschild, M., & Schierbeck, J. (2006). A framework for social life cycle impact assessment (10 pp). The International Journal of Life Cycle Assessment, 11, 88–97.CrossRefGoogle Scholar
  24. Ekener-Petersen, E., & Finnveden, G. (2013a). Potential hotspots identified by social LCA—Part 1: A case study of a laptop computer. The International Journal of Life Cycle Assessment, 18, 127–143.  https://doi.org/10.1007/s11367-012-0442-7.CrossRefGoogle Scholar
  25. Ekener-Petersen, E., & Finnveden, G. (2013b). Potential hotspots identified by social LCA-part 1: A case study of a laptop computer. International Journal of Life Cycle Assessment, 18, 127–143.  https://doi.org/10.1007/s11367-012-0442-7.CrossRefGoogle Scholar
  26. Ekener-Petersen, E., Höglund, J., & Finnveden, G. (2014). Screening potential social impacts of fossil fuels and biofuels for vehicles. Energy Policy, 73, 416–426.  https://doi.org/10.1016/j.enpol.2014.05.034.CrossRefGoogle Scholar
  27. el Triangle. 2014. Admitida a trámite la demanda contra Florentino por fraude y falseamiento. http://www.eltriangle.eu/es/notices/2014/10/admitida-a-tramite-la-demanda-contra-florentino-por-fraude-y-falseamiento-2736.php. Accessed April 6, 2015.
  28. Fuqiang, W., Ziming, C., Jianyu, T., Yuan, Y., Yong, S., & Linhua, L. (2017). Progress in concentrated solar power technology with parabolic trough collector system: A comprehensive review. Renewable and Sustainable Energy Reviews, 79, 1314–1328.  https://doi.org/10.1016/j.rser.2017.05.174.CrossRefGoogle Scholar
  29. Goldemberg, J., Johansson, T. B., Reddy, A. K. N., & Williams, R. H. (1985). Basic needs and much more with one kilowatt per capita. Ambio, 14(4/5), 190–200. Energy in Developing Countries.Google Scholar
  30. Guinée, J., Heijungs, R., Huppes, G., Zamagni, A., & Masoni, P. (2011). Life cycle assessment: Past, present, and future. Environmental Science & Technology, 45, 90–96.  https://doi.org/10.1021/es101316v.CrossRefGoogle Scholar
  31. Heijungs, R., Huppes, G., Guinée, J. (2009). A scientific framework for LCA—Deliverable (d15) of work package 2 (wp2) CALCAS project. Institute of Environmental Sciences, Leiden University (CML).Google Scholar
  32. Heller, P. (2017). Introduction to CSP systems and performance. In Heller, P. (Ed.), The performance of concentrated solar power (CSP) systems (pp. 1–29). Cambridge: Woodhead Publishing.  https://doi.org/10.1016/B978-0-08-100447-0.00001-8.
  33. ILO. (2009). The cost of coercion.Google Scholar
  34. INE. (2014). Encuesta Anual de Estructura Salarial Año 2012.Google Scholar
  35. INE. (2015). Instituto Nacional de Estadística (Spanish National Institute for Statistics). https://www.ine.es/
  36. INE. (2015a). El empleo de las personas con discapacidad. http://www.ine.es/dynt3/inebase/es/index.htm?padre=1793&capsel=1797. Accessed June 2, 2015.
  37. IRENA. (2012). Renewable energy technologies: Cost analysis series. Concentrating Solar Power, 1(2/5). https://www.irena.org/documentdownloads/publications/re_technologies_cost_analysis-csp.pdf (Power Sector).
  38. IRENA. (2018). Renewable power generation costs in 2017. International Renewable Energy Agency. ISBN: 978-92-9260-040-2. http://irena.org/publications/2018/Jan/Renewable-power-generation-costs-in-2017.
  39. Klein, S. J. W., & Rubin, E. S. (2013). Life cycle assessment of greenhouse gas emissions, water and land use for concentrated solar power plants with different energy backup systems. Energy Policy, 63, 935–950.  https://doi.org/10.1016/j.enpol.2013.08.057.CrossRefGoogle Scholar
  40. Lamnatou, C., & Chemisana, D. (2017). Concentrating solar systems: Life cycle assessment (LCA) and environmental issues. Renewable and Sustainable Energy Reviews., 78, 916–932.  https://doi.org/10.1016/j.rser.2017.04.065.CrossRefGoogle Scholar
  41. Lechón, Y., de la Rúa, C., & Sáez, R. (2008). Life cycle environmental impacts of electricity production by solarthermal power plants in Spain. Journal of Solar Energy Engineering, 130, 021012.  https://doi.org/10.1115/1.2888754.CrossRefGoogle Scholar
  42. Lovegrove, K., & Stein, W. (2017). Concentrating solar power technology: Principles, developments and applications. Cambridge: Woodhead Publishing Series in Energy. ISBN: 978-1845697693.Google Scholar
  43. Macombe, C., Leskinen, P., Feschet, P., & Antikainen, R. (2013). Social life cycle assessment of biodiesel production at three levels: A literature review and development needs. Journal of Cleaner Production, 52, 205–216.  https://doi.org/10.1016/j.jclepro.2013.03.026.CrossRefGoogle Scholar
  44. Manik, Y., Leahy, J., & Halog, A. (2013a). Social life cycle assessment of palm oil biodiesel: A case study in Jambi province of Indonesia. International Journal of Life Cycle Assessment, 18, 1386–1392.CrossRefGoogle Scholar
  45. Manik, Y., Leahy, J., & Halog, A. (2013b). Social life cycle assessment of palm oil biodiesel: A case study in Jambi Province of Indonesia. The International Journal of Life Cycle Assessment, 18(7), 1386–1392.CrossRefGoogle Scholar
  46. Martínez-Blanco, J., Lehmann, A., Muñoz, P., Antón, A., Traverso, M., Rieradevall, J., et al. (2014). Application challenges for the social life cycle assessment of fertilizers within life cycle sustainability assessment. Journal of Cleaner Production., 69, 34–48.  https://doi.org/10.1016/j.jclepro.2014.01.044.CrossRefGoogle Scholar
  47. Mattioda, R. A., Mazzi, A., Canciglieri Jr. O., & Scipioni, A. (2015). Determining the principal references of the social life cycle assessment of products. International Journal of Life Cycle Assessment, 20, 1155–1165.Google Scholar
  48. Meyer, R., Schlecht, M., & Chhatbar, K. (2012). Solar resources for concentrating solar power (CSP) systems. In K. Lovegrove & W. Stein (Eds.), Concentrating solar power technology, woodhead publishing series in energy (pp. 68–92). Cambridge: Woodhead Publishing.  https://doi.org/10.1533/9780857096173.1.68.CrossRefGoogle Scholar
  49. MINETAD. (2018). Datos Estadisticos. IV. Enería y emisiones [WWW Document].Google Scholar
  50. Ministry of Foreign Affairs. (2015). Fichas País [WWW Document]. http://www.exteriores.gob.es/portal/es/saladeprensa/paginas/fichaspais.aspx.
  51. Ministry of Industry. (2013). BOE-A-2013-2876. Resolution of 7 March 2013. BOE no. 65, 16th March 2013.Google Scholar
  52. Montaño, B. (2014). Un juez admite a trámite una demanda contra Florentino por fraude y falseamiento de las cuentas de ACS. http://vozpopuli.com/economia-y-finanzas/50934-un-juez-admite-a-tramite-una-demanda-contra-florentino-por-fraude-y-falseamiento-de-las-cuentas-de-acs. Accessed June 4, 2015.
  53. Nielsen, L. H., Skytte, K., Cabrera Pérez, C. H., García, E. C., Barrio, D. L., Cuadrado, L. G., et al. (2016). Feasibility study on HYSOL CSP. In The 7th International Conference on Ambient Systems, Networks and Technologies (ANT 2016)/The 6th International Conference on Sustainable Energy Information Technology (SEIT-2016) / Affiliated Workshops.  https://doi.org/10.1016/j.procs.2016.04.238.
  54. NREL (2018). Concentrating solar power projects. National Renewable Energy Laboratory [WWW Document]. http://www.nrel.gov/csp/solarpaces/
  55. OECD. (2014). Prices and Purchasing Power Parities [WWW Document]. http://stats.oecd.org/Index.aspx?DataSetCode=PPPGDP.
  56. OECD. (2015). Regulatory reform and competition policy. http://www.oecd.org/eco/reform/. Accessed March 6, 2015.
  57. Parent, J., Cucuzzella, C., & Revéret, J.-P. (2010). Impact assessment in SLCA: Sorting the sLCIA methods according to their outcomes. International Journal of Life Cycle Assessment, 15, 164–171.CrossRefGoogle Scholar
  58. Petti, L., Ugaya, C. M. L., & Di Cesare, S. (2014). Systematic review of social-life cycle assessment (S-LCA) case studies [WWW Document]. http://acv-sociale.cirad.fr/content/download/4260/31992/version/1/file/Thema+2+-+Sess1-4+Petti+et+al.+2014_4thSocSem_SLCA_Montpellier.pdf.
  59. Piemonte, V., De Falco, M., Giaconia, A., Basile, A., & Iaquaniello, G. (2012). Production of enriched methane by a molten-salt concentrated solar power plant coupled with a steam reforming process: An LCA study. International Journal of Hydrogen Energy, 37, 11556–11561.  https://doi.org/10.1016/j.ijhydene.2012.03.064.CrossRefGoogle Scholar
  60. Piemonte, V., De Falco, M., Tarquini, P., & Giaconia, A. (2011). Life cycle assessment of a high temperature molten salt concentrated solar power plant. Solar Energy, 85, 1101–1108.  https://doi.org/10.1016/j.solener.2011.03.002.CrossRefGoogle Scholar
  61. PROTERMOSOLAR. (2018). Asociación Española de la Industria Solar Termoeléctrica. http://www.protermosolar.com/. Last visited January [WWW Document]. http://www.protermosolar.com.
  62. San Miguel, G., & Corona, B. (2014). Hybridizing concentrated solar power (CSP) with biogas and biomethane as an alternative to natural gas: Analysis of environmental performance using LCA. Renewable Energy, 66, 580–587.  https://doi.org/10.1016/j.renene.2013.12.023.CrossRefGoogle Scholar
  63. San Miguel, G., & Corona, B. (2018). Economic viability of concentrated solar power under different regulatory frameworks in Spain. Renewable and Sustainable Energy Reviews, 91, 205–218.  https://doi.org/10.1016/j.rser.2018.03.017.CrossRefGoogle Scholar
  64. San Miguel, G., Corona, B., Servert, J., Lopez, D., Cerrajero, E., Gutierrez, F., et al. (2015). Technical and environmental analysis of parabolic trough concentrating solar power (CSP) technologies. In Gilles, L., Elena, J., Beatriz, C. (Eds.), Environment, energy and climate change II (pp. 33–53). Switzerland: Springer International Publishing. https://doi.org/10.1007/698_2015_334.
  65. Servert, J. F., Cerrajero, E., López, D., Yagüe, S., Gutierrez, F., Lasheras, M., et al. (2015). Base case analysis of a HYSOL power plant. In International Conference on Concentrating Solar Power and Chemical Energy Systems, SolarPACES 2014 (Vol. 69, pp. 1152–1159). http://dx.doi.org/10.1016/j.egypro.2015.03.187.
  66. Servert, J., López, D., Cerrajero, E., Rocha, A. R., Pereira, D., & González, L. (2016). Tailoring HYSOL: Solar energy contribution to reach full dispatchability and firmness in target markets. Procedia Computer Science, 83, 1134–1141.  https://doi.org/10.1016/j.procs.2016.04.234.CrossRefGoogle Scholar
  67. Streeten, P., & Burki, S. J. (1978). Basic needs: Some issues. World Development, 6(3), 411–421.CrossRefGoogle Scholar
  68. Teinteresa. (2015). CNMC sanciona con 98,2 millions a 39 empresas y tres asociaciones de gestión de residuos y saneamiento urbano. http://www.teinteresa.es/dinero/SANCIONA-MILLONES-ASOCIACIONES-RESIDUOS-SANEAMIENTO_0_1292272515.html. Accessed June 4, 2015.
  69. Traverso, M., Asdrubali, F., Francia, A., & Finkbeiner, M. (2012). Towards life cycle sustainability assessment: An implementation to photovoltaic modules. International Journal of Life Cycle Assessment, 17, 1068–1079.  https://doi.org/10.1007/s11367-012-0433-8.CrossRefGoogle Scholar
  70. UNEP/SETAC. (2009). Guidelines for social life cycle assessment.Google Scholar
  71. UNEP/SETAC. (2011). Towards a life cycle sustainability assessment: Making informed choices on products. Paris.Google Scholar
  72. UNEP/SETAC. (2013). The Methodological Sheets for Sub-Categories in Social Life Cycle Assessment (S-LCA).Google Scholar
  73. WCED. (1987). Report of the World Commission on Environment and Development: Our common future. Oxford Pap. Report of, 400.  https://doi.org/10.2307/2621529.

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Copernicus Institute of Sustainable DevelopmentUtrecht UniversityUtrechtThe Netherlands
  2. 2.Department of Chemical and Environmental Engineering, ETSIIUniversidad Politécnica de MadridMadridSpain

Personalised recommendations