Applications of the Contraction Principle

  • P. V. SubrahmanyamEmail author
Part of the Forum for Interdisciplinary Mathematics book series (FFIM)


This short chapter offers a few samples of applications of the contraction principle. It was already pointed out that the evergrowing list of applications of this fixed point theorem would fill volumes.


  1. 1.
    Chung, K.L.: A Course in Probability Theory. Academic, Cambridge. An imprint of Elsevier Indian Reprint 2007Google Scholar
  2. 2.
    Gersten, S.M.: A short proof of the algebraic Weierstrass preparation theorem. Proc. Am. Math. Soc. 88, 751–752 (1983)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Hamedani, G.G., Walter, G.G.: A fixed point theorem and its application to the central limit theorem. Arch. Math. 43, 258–264 (1984)Google Scholar
  4. 4.
    Kuczma, M., Choczewki, B., Ger, R.: Iterative Functional Equations. Encyclopedia of Mathematics and its Applications, vol. 32. Cambridge University, Cambridge (1990)Google Scholar
  5. 5.
    Lang, S.: Algebra. Addison-Wesley Publishing Company Inc, Boston (1995)Google Scholar
  6. 6.
    Nagumo, M.: Uber da anfangswertproblem partieller differentialgleichungen. Jpn. J. Math. 18, 41–47 (1942)CrossRefGoogle Scholar
  7. 7.
    Ryder, G.H.: Solutions of a functional differential equation. Am. Math. Mon. 76, 1031–1033 (1969)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Subrahmanyam, P.V.: An operator equation in a Tychonoff space. Aequationes Math. 20, 166–169 (1980)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Tan, K.K.: Fixed point theorems for nonexpansive mappings. Pac. J. Math. 41, 829–842 (1972)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Tisdell, C.C.: A note on improved contraction methods for discrete boundary value problems. J. Differ. Equ. Appl. 18, 1773–1777 (1972)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Trotter, M.F.: An elementary proof of the central limit theorem. Arch. Math. 10, 226–234 (1959)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Utz, W.R.: The equation \(f^\prime (x) = af(g(x))\), research problems. Bull. Am. Math. Soc. 71, 138 (1965)Google Scholar
  13. 13.
    Walter, W.: An elementary proof of the Cauchy-Kowalevsky theorem. Am. Math. Mon. 92, 115–126 (1985)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Zariski, O., Samuel, P.: Commutative Algebra, vol. II. Van Nostrand Company Inc, New York (1969). East-West Edition, New DelhiGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of MathematicsIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations